首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
admin
2017-07-10
25
问题
设f(x)在[a,b]上连续,任取x
i
∈[a,b](i=1,2,…,n),任取k
i
>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
选项
答案
因为f(x)在[a,b]上连续,所以f(x)在[a,b]上取到最小值m和最大值M, 显然有m≤f(x
i
)≤M(i=1,2,…,n), 注意到k
i
>0(i=1,2,…,n),所以有k
i
m≤kif(x
i
)≤k
i
M(i=1,2,…,n), 同向不等式相加,得 (k
1
+k
2
+…+k
n
)m≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)≤(k
1
+k
2
+…+k
n
)M, 即m≤[*]≤M, 由介值定理,存在ξ∈[a,b],使得f(ξ)=[*] 即k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/3St4777K
0
考研数学二
相关试题推荐
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
证明:[*]
利用二阶导数,判断下列函数的极值:(1)y=x3-3x2-9x-5(2)y=(x-3)2(x-2)(3)y=2x-ln(4x)2(4)y=2ex+e-x
求下列各函数的导数(其中,a,b为常数):
计算下列曲面所围成的立体的体积:(1)z=1+x+y,z=0,x+y=1,x=0,y=0(2)z=x2+y2,y=1,z=0,y=x2
求下列函数在指定点处的导数
曲线y=(x-1)2(x-3)2的拐点个数为
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
随机试题
下面是一份丰田公司的报告:临时报告和正规报告有什么不同?
中唐古文运动主要反对()
驱虫药中不宜入煎剂的药物是
以下有关阿莫西林的叙述,正确的是()。
下列条件属于地面水环境影响评价工作级别划分的依据的是()。
要约邀请不是合同成立过程中的必经过程,下列属于要约邀请的是( )。
流动性覆盖率(LCR)旨在确保商业银行具有充足的合格优质流动性资产,能够在银监会规定的流动性压力情景下,通过变现这些资产满足未来至少()日的流动性需求。
国学大师周国平说过:“何必用舞台上的_________来掩盖生活中的_________!”确实,命运多舛,世事无常,而真味是淡。一如当烟云褪尽,尘埃落定,邈远静谧处一颗心脏噗噗跳动轻微而有力的声音,便是生命最纯净而真挚的呼告。我们只需,俯下身,______
根据法律规定,人民法院对有些案件,依当事人的申请,可以裁定先予执行。下列选项中,不必裁定先予执行的是()。
Imagine,ifyouwill,theaveragegamesplayer.Whatdoyousee?Aguywhonevergrewup?Oranervous18-year-oldpushingbutto
最新回复
(
0
)