首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=3x12+4x22+3x32+2x1x3. (I)求正交变换x=Qy将二次型f(x1,x2,x3)化为标准型; (Ⅱ)证明:
已知二次型f(x1,x2,x3)=3x12+4x22+3x32+2x1x3. (I)求正交变换x=Qy将二次型f(x1,x2,x3)化为标准型; (Ⅱ)证明:
admin
2022-09-22
54
问题
已知二次型f(x
1
,x
2
,x
3
)=3x
1
2
+4x
2
2
+3x
3
2
+2x
1
x
3
.
(I)求正交变换x=Qy将二次型f(x
1
,x
2
,x
3
)化为标准型;
(Ⅱ)证明:
选项
答案
(I)二次型f(x
1
,x
2
,x
3
)=3x
1
2
+4x
2
2
+3x
3
2
+2x
1
x
3
对应的矩阵为A=[*] 因为|A-λE|=[*]=-(λ-2)(λ-4)
2
=0, 所以A的特征值为λ
1
=2,λ
2
=λ
3
=4. 当λ
1
=2时,解(A-2E)x=0. 由A-2E=[*]得对应于λ
1
=2的特征向量为α
1
=[*] 当λ
2
=λ
3
=4时,解(A-4E)x=0. 由A-4E=[*]得对应于λ
2
=λ
3
=4的特征向量为α
2
=[*]α
3
=[*] α
1
,α
2
,α
3
已互相正交,故只需将其单位化得 [*] 令Q=(γ
1
,γ
2
,γ
3
)=[*]经正交变换x=Qy,将二次型f(x
1
,x
2
,x
3
)化为标准型f(y
1
,y
2
,y
3
)=2y
1
2
+4y
2
2
+4y
3
2
. (Ⅱ)由(I)得f(x
1
,x
2
,x
3
)[*]f(y
1
,y
2
,y
3
)=2y
1
2
+4y
2
2
+4y
3
2
, 而2(y
1
2
+y
2
2
+y
3
2
)≤2y
1
2
+4y
2
2
+4y
3
2
≤4(y
1
2
+y
2
2
+y
3
2
), 故2≤[*]≤4(y
1
,y
2
,y
3
≠0). 因此,[*]=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Pf4777K
0
考研数学二
相关试题推荐
D是圆周x2+y2=Rx所围成的闭区域,则=_________。
设f(x)连续,则=_____
设矩阵,B=A2-3A+2E,则B-1=_______.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’’(2)=_________。
设一阶非齐次线性微分方程y’+P(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=__________.
设f(x,y)在区域D:x2+y2≤t2上连续且f(0,0)=4,则=_______
设f(x,y)连续,且f(x,y)=x+yf(μ,ν)dμdν,其中D是由y=,x=1,y=2所围成的区域,则f(x,y)=________。
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf′(ξ)ln.
[x]表示不超过x的最大整数,试确定常数a的值,使存在,并求出此极限.
设向量组I:α1,α2,…,αr,可由向量组Ⅱ:β1,β2,…,βs线性表示,则下列命题正确的是
随机试题
f(x)=-cosπx+(2x-3)3+(x-1)在区间(-∞,+∞)上零点个数为()
在分析中,下列情况会导致系统误差的是()。
若要用二进制数表示十进制数的0到999,则至少需要______位。
有关急性心肌梗死室间隔破裂穿孔的临床特点正确的是
A、麦角菌科B、多孔菌科C、棕榈科D、伞形科E、百合科茯苓来源于
()不属于组织计划制定要注意的问题。
【背景资料】某项目部承建居民区施工道路工程,制定了详细的交通导行方案,统一设置了各种交通标志、隔离设施、夜间警示信号,沿街居民出入口设置了足够的照明装置。工程要求设立降水井,设计提供了地下管线资料。施工中发生如下事件:事件一:由于位置狭窄,部分围挡
按照审计准则的规定,下列有关总体审计策略和具体审计计划的说法中表述正确的有()。
甲被宣告死亡后,其妻乙改嫁丙。在丙死亡1年后,甲父丁得知甲仍然在世,经过通讯联系后,遂向法院申请撤销死亡宣告。死亡宣告撤销后,甲、乙的婚姻关系()。
A.equippingB.exploreC.presentD.realisticE.noticeablyF.growingupG.interacting
最新回复
(
0
)