首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0. 证明:向量组α,Aα,…,Ak-1α是线性无关的.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0. 证明:向量组α,Aα,…,Ak-1α是线性无关的.
admin
2016-10-20
59
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k-1
α≠0.
证明:向量组α,Aα,…,A
k-1
α是线性无关的.
选项
答案
(1)(定义法,同乘) 设有常数l
1
,l
2
,…,l
k
,使得 l
1
α+l
2
Aα+…+l
k
A
k-1
α=0, 用A
k-1
左乘上式,得A
k-1
(l
1
α+l
2
Aa+…+l
k
A
k-1
α)=0. 由A
k
α=0,知A
k+1
α=A
k+2
α=…=0,从而有l
1
A
k-1
α=0.因为A
k-1
α≠0,所以l
1
=0. 类似l
2
=l
3
=…=l
k
=0,故向量组α,Aα,…,A
k-1
α线性无关. (2)(友证法) 如α,Aα,A
2
α,…,A
k-1
α线性相关,则存在不全为0的数l
1
,l
2
,…,l
k
,使 l
1
α+l
2
Aα+…+l
k
A
k-1
α=0. 设l
1
,l
2
,…,l
k
中第一个不为0的数是l
i
,则 l
i
A
i-1
α+l
i+1
A
i
α+…+l
k
A
k-1
α=0. 用A
k-i
左乘上式,利用A
k
α=A
k+1
α=…=0,得l
i
A
k-1
α=0. 由于l
i
≠0,得A
k-1
α=0,与已知矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/4ST4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤(4)为4个温控器显示的按递增顺序排列温度值,则事件E等于().
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
如果n个事件A1,A2,…,An相互独立,证明:
设P(A)=0或1,证明A与其他任何事件B相互独立.
用比较判别法判断的敛散性.
利用极坐标将积分,化成一元函数积分式,其中f连续.
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
随机试题
Shoppingforclothesisnotthesameexperienceforaman【C1】______itisforawoman.Amangoesshoppingbecauseheneedssomet
A.教育策略B.社会策略C.环境策略D.资源策略E.传播策略在中学开展以“学会拒绝吸第一支烟”为主题的第二课堂活动,属于健康教育与健康促进干预的
若原水中含4(mg/L)Mn2+,曝气法氧化锰时所需的理论溶解氧量为()mg/L。
组合机床的部件中( )属于通用部件。
利息保障倍数是指企业的()与利息费用的比率。
案例: 2018年10月12日,甲医院向乙公司承租呼吸机10台,双方签订书面合同,约定:租期3个月,每台租金12000元,全部租金120000元于租期届满时一次性支付。双方未约定租赁期间的维修事项。 2018年11月11日,1台呼吸机在正常使用的情况下
引起潮起潮落的主要原因是()。
【富督商办】2009年历史学统考真题;辽宁大学2016年历史学专业基础真题
以下用于在网络应用层和传输层之间提供加密方案的协议是(9)________________。
Thebag______books______mine.
最新回复
(
0
)