首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设某工厂要根据拥有的资源和设备,计划生产甲、乙两种产品,其主要资源有钢材4吨,铜材3吨。专用设备能力8千台时,资源与设备能力的消耗定额及单位产品所获利润如表3.3所示。问如何安排生产,才能使该厂获得的利润最大?
设某工厂要根据拥有的资源和设备,计划生产甲、乙两种产品,其主要资源有钢材4吨,铜材3吨。专用设备能力8千台时,资源与设备能力的消耗定额及单位产品所获利润如表3.3所示。问如何安排生产,才能使该厂获得的利润最大?
admin
2015-01-12
46
问题
设某工厂要根据拥有的资源和设备,计划生产甲、乙两种产品,其主要资源有钢材4吨,铜材3吨。专用设备能力8千台时,资源与设备能力的消耗定额及单位产品所获利润如表3.3所示。问如何安排生产,才能使该厂获得的利润最大?
选项
答案
假设甲、乙两种产品的计划生产量分别为x
1
,x
2
件,总利润为f(万元),那么我们的任务就是求变量x
1
,x
2
的值为多少时,才能使利润f=2x
1
+2x
2
最大。根据题意,我们知道两种产品的生产受到下列条件的限制:[*] 生产甲、乙两种产品所用钢材的总数不能超过现有的钢材数,于是我们得到不等式:x
1
+Ox
2
≤4(吨), 即x
1
≤4(吨)生产甲、乙两种产品的所用铜材的总数不能超过现有的铜材数,于是我们得到不等式:Ox
1
+x
2
≤3(吨), 即x
2
≤3(吨)生产甲、乙两种产品所用的设备能力总数不能超过现有设备能力的台时数,于是我们得到不等式:x
1
+2x
2
≤8(千台时)综合上述讨论,在加工时间和利润与产品产量成线性关系的假设下,考虑到甲、乙两种产品的生产量不能为负数,即x
1
,x
2
≥0,于是最优方案写成线性规划的数学模型为:[*] 建立x
1
Ox
2
直角坐标系,求满足线性规划问题约束条件的可行域,如图3.4所示。[*] 平行向右移动直线f,可知,的值是增加的。同时,由[*]可以得到C点的坐标为(4,2)。当f增加到C点时,x
1
=4,x
2
=2,maxf=2×4+2×2=12即甲产品生产量为4件,乙产品生产量为2件时,总利润f达到最大值12(万元)。
解析
转载请注明原文地址:https://kaotiyun.com/show/4SVx777K
本试题收录于:
物流数学题库理工类分类
0
物流数学
理工类
相关试题推荐
下列算法的时间复杂度是【】for(inti=1;i
设系统的特征方程为s4+4s3+2s2+6s+2=0试用劳斯判据判断系统的稳定性。
对个人计算机进行病毒防范,最直接的方法就是安装和使用_____。
在常用的网络性能测评指标中,【】是指单位时间内通过网络设备的平均比特数。
MAC帧结构中包含两个地址:一个是______,另一个是源地址,均为48bit。
______是一种控制和管理计算机硬件和软件资源的系统软件,合理地组织计算机的处理流程,并方便用户使用计算机。
在下列存储管理方案中,能扩充主存容量的是
某局域网(如下图所示)由1个路由器、1个防火墙、3个交换机、1个服务器,以及内网8台客户端计算机组成。请完成下述要求:(1)在上图的空白框中填写设备名;(2)完成上图中设备之间的连线,以构成完整的网络结构图。
某公司生产甲、乙两种产品(吨),这两种产品均需要使用两种关键原材料进行加工,资源限量与可获利润数据如题40表。为获得利润最大化,该企业每日应如何安排两种产品的生产?试写出该线性规划问题的数学模型,用图解法求出最优解。
用图解法求下列两个变量的线性规划问题:使目标函数f=3x+3y达到最大。
随机试题
A.牡蛎B.栝楼实C.茯苓D.芍药《伤寒论》中,对小柴胡汤的加减,“心下悸,小便不利者”。则去黄芩加
乳腺癌放射治疗的靶区主要包括
下列抗菌药物不能溶于0.9%氯化钠注射液的是
中耳炎的发病部位是
不符合尿干化学试带反应原理的是
腹股沟疝处理原则正确的是
不属于包合物制备方法的是()。
钱某是民营企业家,并开办了一家自己的工厂甲厂。2003年甲厂与乙公司订立了一份客车买卖合同,约定由甲厂向乙公司提供客车30台,乙公司向甲厂支付货款600万元。甲厂履行了合同,乙公司却拒不支付货款。甲厂于2009年6月20日向辽宁省某市中级人民法院提起诉讼,
施工方信息管理手段的核心是()。[2013年真题]
E企业2014年有关预算资料如下:(1)该企业2~7月份的销售收入分别为300000元、400000元、500000元、600000元、700000元和800000元。每月的销售收入中,当月收到现金60%,下月收到现金30%,下下月收到现金10%。(2
最新回复
(
0
)