首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
admin
2016-10-20
63
问题
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=
未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T
0
结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
选项
答案
考虑事件A:“试验直至时间T
0
为止,有k只器件失效,而有n-k只未失效”的概率.记T的分布函数为F(t),即有 [*] 一只器件在t=0时投入试验,则在时间T
0
以前失效的概率为P{T≤T
0
}=F(T
0
)=[*];而在时间T
0
未失效的概率为P{T>T
0
}=1-F(T
0
)=[*].由于各只器件的试验结果是相互独立的,因此事件A的概率为 [*] 这就是所求的似然函数.取对数得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4iT4777K
0
考研数学三
相关试题推荐
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).(1)写出所有可能结果构成的样本空间Ω;(2)事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
一架巡逻直升机在距地面3km的高度以120km/h的常速沿着一条水平笔直的高速公路向前飞行,飞行员观察到迎面驶来一辆汽车.通过雷达测出直升机与汽车间的距离为5km,并且此距离以160km/h的速率减少.试求出汽车行进的速度.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
设总体X服从(0,θ](θ>0)上的均匀分布,X1,X2,…,Xn是来自总体X的样本,求θ的最大似然估计量与矩估计算.
随机试题
急性闭角型青光眼发作期的治疗。
引起继发性再生障碍性贫血最常见的药物为()
普萘洛尔与硝酸甘油合用治疗心绞痛的药理基础是
王某是某公司的职员,月薪颇丰,该公司作为其个人所得税的扣缴义务人每月为其代扣、代缴税款。一日王某要求公司开具代扣、代收税款凭证,公司财务人员拒绝开具,对此分析正确的是:()。
房地产投资分析中的敏感性分析是在风险因素发生的概率可以确定的情况下的风险分析。()
在下列各项中,属于财务管理经济环境构成要素的有()。
下述关于数据库系统的叙述中正确的是()。
隐性课程大体分为制度性、关系性、______四种类型。
2011年全国批准建设用地61.2万公顷,其中转为建设用地的农用地41.05万公顷,转为建设用地的耕地25.3万公顷,同比分别增长13.5%、14.8%、8.5%。2010年转为建设用地的农用地占批准建设用地的比重为:
设f(χ)在[a,b]上连续可导,f(χ)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(χ)dχ=0,证明:(1)在(a,b)内至少存在一点ξ,使得f′(ξ)=f(ξ);(2)在(a,b)内至少存在一点η(η≠ξ),使得f〞(η)=f
最新回复
(
0
)