首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得 f(x)dx=f(0)+f(1)+(ξ).
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得 f(x)dx=f(0)+f(1)+(ξ).
admin
2016-03-26
39
问题
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
f(x)dx=f(0)+f(1)+
(ξ).
选项
答案
令F(x)=[*]f(t)dt,则F(x)三阶连续可导且F’(x)=f(x),由泰勒公式得 [*] 两式相减得F(1)一F(0)=[*], 即[*] 因为[*](x)∈C[ξ
1
,ξ
2
],所以[*]上取到最大值M和最小值m, 于是[*], 由介值定理,存在[*], 故有[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/4nT4777K
0
考研数学三
相关试题推荐
毛泽东同志说:“夺取全国胜利,这只是万里长征走完了第一步。如果这一步也值得骄傲,那是比较渺小的,更值得骄傲的还在后头。在过了几十年之后来看中国人民民主革命的胜利,就会使人们感觉那好像只是一出长剧的一个短小的序幕。剧是必须从序幕开始的,但序幕还不是高潮。”总
一位社会学家发现大楼的一块玻璃坏了,起初他没太当回事,没过多久,他发现许多处窗户都破损了,经过调研后,他得出结论:一样东西如果有点破损,人们就会有意无意地加快它的破损速度,一样东西如果完好无损,或是及时维护,人们就会精心地护理。这就是著名的“破窗定律”。下
“人的思维是否具有真理性,这并不是一个理论的问题,而是一个实践的问题。人应该在实践中证明自己思维的真理性,即自己思维的现实性和力量,亦即自己思维的此岸性。”这一论断说明了()。
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
如果n个事件A1,A2,…,An相互独立,证明:
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求:(I)X和Y的联合概率分布;(Ⅱ)D(X+Y).
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
设二维随机变量X和Y的联合概率密度为求X和Y的联合分布F(x,y).
随机试题
骨盆骨折特有的临床表现是
A.慢性龈炎B.妊娠期龈炎C.急性龈乳头炎D.坏死性溃疡性龈炎E.药物性牙龈肥大牙龈一般不易出血的是()
A、三金片B、肾炎四味片C、癃闭舒胶囊D、癃清片E、五苓散某男,28岁。患慢性非细菌性前列腺炎,症见小便短赤、淋沥涩痛、尿急频数。证属肾虚湿热下注,治疗宜选用的中成药是
各单位每年形成的会计档案,都应由会计机构按照归档的要求,负责整理立卷,装订成册,编制()。
在风险偏好设置与实施过程中,需要注意()。
甲商贸有限责任公司董事会正在讨论设置总经理的有关事项,各董事的下列观点中,符合公司法律制度规定的有()。
在矩阵图法中,按矩阵图的型式可将矩阵图分()。
中国第一大淡水湖是()。
新材料按其性能分,有结构材料和()材料两类。
下面不属于教育心理学研究范畴的是
最新回复
(
0
)