首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E=ααT,其中α为n维非零列向量.证明: A2=A的充分必要条件是α为单位向量;
设A=E=ααT,其中α为n维非零列向量.证明: A2=A的充分必要条件是α为单位向量;
admin
2018-04-18
107
问题
设A=E=αα
T
,其中α为n维非零列向量.证明:
A
2
=A的充分必要条件是α为单位向量;
选项
答案
令α
T
α=k,则A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+kαα
T
,因为α为非零向量,所以αα
T
≠O,于是A
2
=A的充分必要条件是k=1,而α
T
α=|α|
2
,所以A
2
=A的充要条件是α为单位向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/5jk4777K
0
考研数学二
相关试题推荐
设λo是n阶矩阵A的特征值,且齐次线性方程组(λoE-A)x=0的基础解系为η1,η2,则A的属于λo的全部特征向量为().
欲用围墙围成面积为216m2的一块矩形土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽选取多大的尺寸,才能使所用建筑材料最省?
由题设,引入辅助函数,即g(x)=ex,则f(x)与g(x)在区间[a,b]上满足柯西中值定理的条件,所以知存在一点η∈(a,b),使得[*]
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(I)的逆命题成立.
设F(x)是f(x)在区间(a,b)内的一个原函数,则F(x)+f(x)在区间(a,b)内().
设(X,Y)是二维离散型随机向量,其分布为P(X=xi,Y=yj}=pij(i=1,2,…,m;j=1,2,…,n),称(pij)m×n为联合概率矩阵.证明:X与Y相互独立的充要条件是(pij)m×n的秩为1.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
矩阵相似的充分必要条件为
证明:|arctanx-arctany|≤|x-y|
随机试题
羌活、白芷皆可用于治疗()(2007年第32题)
某建筑公司电焊工李某在某厂运焦码头焊接水平梁铁件作业中不穿救生衣,失足落入江中淹溺而死亡。问题:该事故的等级?
债务重组的方式主要包括()。
党取得新民主主义革命胜利的三大法宝是:
你在处理群众来访时已经尽心尽力了。可领导还是批评你说话办事有官腔、学生腔。没有群众语言。理论性太强。说大话空话。你应如何应对?
A.Idon’tknowwhichoneisthebestforhim.B.I’lltakeone.C.yoursonwillenjoyplayingwithit.A:Goodmorning,sir.W
下列观点正确的有()。
TVissooftenaparent’sgoodMend,keepingkidshappilyoccupiedsothegrownupscancookdinner,answerthephone,ortakea
You’veonlygotaslightcold.You’ll______itinadayortwo.
Moreoftenthannot,wewillfindunknownpersoncomeintothespotlightwithsomeshockingbehaviors.Itseemsthatsomepeople
最新回复
(
0
)