首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
admin
2013-03-15
86
问题
已知向量组(I):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
4
,α
5
.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为r(I)=r(II)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,因此α
4
可由α
1
,α
2
,α
3
线性表出,设为α
4
=lα
1
+lα
2
+lα
3
. 若k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=0, 即(k
1
-l
1
k
4
)α
1
+(k
2
-l
2
k
4
)α
2
+(kα
3
-l
3
k
4
4)α
3
+k
4
α
5
=0, 由于r(Ⅲ)=4,即α
1
,α
2
,α
3
,α
5
线性无关.故必有 解出k
4
=0,k
3
=0,k
2
=0,k
1
=0. 于是α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/5o34777K
0
考研数学二
相关试题推荐
[*]
[*]
-2/3
设A一(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
设向量β可由向量组α1,α2,…,αm线性表出,但不能由向量组(Ⅰ)α1,α2,…,αm-1线性表出,记向量组(Ⅱ)α1,α2,…,αm-1,β,则()
(10年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限.
(15年)设矩阵A=相似于矩阵B=.(Ⅰ)求a,b的值;(Ⅱ)求可逆矩阵P,使P-1AP为对角矩阵.
(2010年)设f(x)=ln10x,g(x)=x,h(x)=,则当x充分大时有()
(92年)设测量误差X~N(0,102).试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并用泊松分布求出α的近似值(要求小数点后取两位有效数字).
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3。(Ⅰ)证明:向量组α1,α2,α3线性无关;(Ⅱ)证明:A不可相似对角化。
随机试题
清洁定子绕组、转子绕组及电刷时,可用清洁的布(或棉纱)蘸少量的()擦洗。
中国早期接受、宣传马克思主义的主要是
患者男,30岁。出现急性发作的畏寒、高热并咳大量脓臭痰,叩诊呈浊音,听诊呼吸音减低,经诊断考虑为血源性肺脓肿。该病最常见的致病菌是
下列疾病中,临床可出现尿闭、尿淋漓现象的是()。
A.阴道前后壁修补术B.Manchester手术C.LeFort术D.子宫悬吊术E.经阴道子宫全切除+阴道前后壁修补术年龄较大无生育要求、Ⅱ、Ⅲ度子宫脱垂伴阴道前后壁脱垂的患者宜采用的手术方式是
污染水体中水蚤的颜色与清洁水体中的比较,结果是()。
经该饮料厂索赔,卖方将出现质量问题的零件的赔付品空运至贵州,以下关于赔付的零件表述正确的是()
不是说个体只有组成集体,才能成为中国梦的主体,而是每一个个体自身就是中国梦的主体。我们通过集体体现出共同的意识,我们更通过自身体现出个体意识。人民是各种人的集合,每个人都有独特的个性,都有自己的追求,都有自己的理想。这段文字意在说明:
Bellpalsy
Itisatruthuniversallyacknowledged,thatasinglemaninpossessionofagoodfortune,mustbeinwantofawife.However
最新回复
(
0
)