首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(—1,2,—3)T都是A属于λ=6的特征向量,求矩阵A。
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(—1,2,—3)T都是A属于λ=6的特征向量,求矩阵A。
admin
2017-01-21
55
问题
设三阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α
3
=(—1,2,—3)
T
都是A属于λ=6的特征向量,求矩阵A。
选项
答案
由r(A)=2知,|A|=0,所以λ=0是A的另一特征值。 因为λ
1
=λ
2
=6是实对称矩阵的二重特征值,故A属于λ=6的线性无关的特征向量有两个,因此α
1
,α
2
,α
3
必线性相关,显然α
1
,α
2
线性无关。 设矩阵A属于λ=0的特征向量α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值的特征向量相互正交,故有 [*] 解得此方程组的基础解系a=(—1,1,1)
T
。 根据A(α
1
,α
2
,α)=(6α
1
,6α
2
,0)得 A=(6α
1
,6α
2
,0)(α
1
,α
2
,α)
—1
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/62H4777K
0
考研数学三
相关试题推荐
设函数f(x),g(x)在[a,b]上连续,g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
计算二重积分以及y轴为边界的无界区域。
设函数D={(x.y)丨x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,求
设A、B为两随机事件,且B∈A,则下列结论中肯定正确的是().
设f(x,y)与φ(x,y)均为可微函数,且φˊy(x,y)≠0,已知(xo,yo)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
求下列不定积分:
设X1,X2,…,X9是来自正态总体X的简单随机样本,Y1=1/6(X1+X2+…+X6),y2=1/3(X7+X8+X9),S2=(Xi-Y2)2Z=证明统计量Z服从自由度为2的t分布.
设(I)求证:f(x)在[0,+∞)上连续;(Ⅱ)求f(x)在[0,+∞)的单调性区间;(III)求f(x)在[0,+∞)的最大值与最小值.
随机试题
交变电流在导体内趋于导体表面流动的现象称为________。
采用切削液能将已产生的切削热从切削区域迅速带走,这主要是切削液具有__________。
下面哪些是Word2010表格具有的功能_________。
A、《基本医疗保险药品目录》中的药品B、《基本医疗保险药品目录》中的“甲类目录”C、《基本医疗保险药品目录》中的“乙类目录”D、《基本医疗保险药品目录》中的中药饮片E、《国家基本药物目录》中的药品根据《
按照《建设工程监理规范》,在实施工程建设监理之前,项目监理机构的总监理工程师应当将()书面通知被监理单位。
结合课程论把合并数门相邻学科内容形成的综合课称为()。
蒋介石、汪精卫先后叛变革命,实行清党分共政策后,国民党是()
ChaucerhasbeencalledtheFatherofPoetryby______generations.
ThetotalareaofNOCisabout41,000squaremetersincluding6,000squaremetersofworkshopand11,000squaremetersofcontai
ItisgenerallybelievedthatAfricanwildelephantsaremoredifficultto______thanAsianones.
最新回复
(
0
)