首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量a不是二阶方阵A的特征向量. (1)证明α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量a不是二阶方阵A的特征向量. (1)证明α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
admin
2015-07-10
67
问题
设二维非零向量a不是二阶方阵A的特征向量.
(1)证明α,Aα线性无关;
(2)若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化;
选项
答案
(1)若α,Aα线性相关,则存在不全为零的数k
1
,k
2
,使得k
1
α+k
2
Aα=0,显然k
2
≠0,所以Aα=一[*],矛盾,所以α,Aα线性无关. (2)由A
2
α+Aα一6α=0,得(A
2
+A一6E)α=0, 因为α≠0,所以r(A
2
+A一6E)<2,从而|A
2
+A一6E|=0,即 |3E+A|.|2E—A|=0,则|3E+A|=0或|2E—A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E一A)α=0,得 (2E一A)α=0,即Aα=2α,矛盾; 若|2E—A|≠0,则2E—A可逆,由(2E一A)(3E+A)α=0,得 (3E+A)α=0,即Aα=一3α,矛盾,所以有|3E+A|=0且|2E一A|=0,于是二阶矩阵A有两个特征值一3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/6kU4777K
0
考研数学三
相关试题推荐
确保国家粮食安全,必须把发展粮食生产放在现代农业建设的首位,不断增强综合生产能力,坚持立足国内保障粮食()的方针。
据新华社2022年5月10日报道,()货运飞船入轨后顺利完成状态设置,于北京时间2022年5月10日8时54分,采用自主快速交会对接模式,成功对接空间站()后向端口。
事实雄辩地证明,只有中国共产党才能肩负起()的历史使命,才能带领中国人民实现()的中国梦。
国家主席习近平2021年10月13日同德国总理默克尔举行视频会晤。他强调,中国和德国自身发展得好,对世界经济的贡献也更大。这证明,国与国之间完全可以避免(),实现互利共赢,这是中德关系应该牢牢把握的主基调。
国家主席习近平2021年12月15日同俄罗斯总统普京举行视频会晤。习近平指出,中俄全方位务实合作展现出巨大()。双边贸易额在前三个季度首次突破千亿美元大关,全年有望再创新高。中俄科技创新年圆满闭幕,一系列战略性大项目顺利实施,共建“一带
近代以来中华民族面临着争取民族独立、人民解放和实现国家富强、人民富裕两大历史任务。标志着第一个历史任务基本实现的历史事件是
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
将函数分别展开成正弦级数和余弦级数.
设f(x)在区间[-a,a](a>0)上有二阶连续导数,f(0)=0写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
随机试题
红细胞沉降变快主要是由于()
我国现存最早的医学专著是
对风湿病具有诊断意义的病变是
朱某系某市国有春风皮鞋厂厂长,在其担任厂长期间,为了获得银行贷款、有关资金以及设法减免税务,曾多次以集体的名义,以送礼、帮助解决差旅费等手段,向该厂所在的市政府领导、财政局(所)、税务所、银行等单位领导人员行贿人民币及其他财物,计30万元人民币。又由于朱某
工程勘察报告《岩土物理力学性质》中应包括:各岩土单元体的特性、状态、均匀程度、密实程度和风化程度等()指标的统计值。
下述SI导出单位中,()符号表示是正确的。
下列哪一项是无效的合同?()
下列关于我国“八二宪法”的表述,不正确的是()(2013年非法学综合课单选第20题)
在窗体上画一个通用对话框,程序运行后,通过ShowOpen方法显示”打开”对话框,要求在该对话框的“文件类型”栏中只显示扩展名为.DOC的文件,则对通用对话框的Filter属性的正确设置是:______。
WhatdidEdwardwantthemantodo?
最新回复
(
0
)