首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明: 都是参数θ的无偏估计量,试比较其有效性.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明: 都是参数θ的无偏估计量,试比较其有效性.
admin
2016-10-24
43
问题
设总体X在区间(0,θ)内服从均匀分布,X
1
,X
2
,X
3
是来自总体的简单随机样本,证明:
都是参数θ的无偏估计量,试比较其有效性.
选项
答案
因为总体X在区间(0,θ)内服从均匀分布,所以分布函数为 [*] F
U
(u)=P(U≤u)一P{max(X
1
,X
2
,X
3
)≤u}=P(X
1
≤u,X
2
≤u,X
3
≤υ) =P(X
1
≤u)P(X
2
≤u)P(X
3
≤u)= [*] F
V
(υ)=P(V≤υ)=P{min(X
1
,X
2
,X
3
)≤υ}=1一P(min(X
1
,X
2
,X
3
)>υ) =1一P(X
1
>υ,X
2
>υX
3
>υ)=1一P(X
1
>υ)P(X
2
>υ)P(X
3
>υ) =1一[1一P(X
1
≤υ)][1一P(X
2
≤υ)][1一P(X
3
≤υ)] [*] 则U,V的密度函数分别为f
U
(x)= [*] 所以[*] 都是参数θ的无偏估计量, D(U)=E(U
2
)一[E(U)]
2
=∫
0
θ
x
2
×[*] D(V)=E(V
2
)一[E(V)]
2
=∫
0
θ
x
2
×[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6sH4777K
0
考研数学三
相关试题推荐
证明等价无穷小具有下列性质:(1)α~α(自反性);(2)若α~β,则β~α(对称性);(3)若α~β,β~γ,则α~γ(传递性).
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
设准线方程为,母线的方向向量为{-1,0,1},求该柱面方程.
设有方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当a>1时,级数收敛.
设长方体的各棱与坐标轴平行,已知长方体的两个顶点的坐标,试写出其余六个顶点的坐标:(1)(1,1,2),(3,4,5);(2)(4,3,0),(1,6,-4).
设∑是空间有界闭区域Ω的整个边界曲面,u(x,y,z),v(x,y,z)∈C(2)(Ω),分别表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数,证明:
设平面薄片所占的闭区域D是由螺线ρ=2ψ上一段弧(0≤ψ≤π/2)与射线ψ=π/2所围成,它的面密度为μ(x,y)=x2+y2,求这薄片的质量.
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
已知下列齐方程组(I)(Ⅱ)求解方程组(I),用其导出组的基础解系表示通解;
随机试题
_________提出了:“意境是中国文化史上最中心也最具有世界贡献的一方面”这一论述。()
目前国际上采用较普遍的避免国际双重征税的方法是
利用计算机及计算机网络进行教学,使得学生和教师可以异地完成教学活动的一种教学模式称为_______。
最常见的贫血是
无功能性垂体腺瘤可能分泌的物质是
治理通货紧缩的政策和措施有()。
某男,22岁,有父母陪同前来,系独生子。父母因儿子上网、不读书、有时与家长顶嘴、脾气暴躁来求助。该青年仪容及衣装服饰均正常,入座后说自己主要是情绪不好,后悔以往学习不努力,现在只是个专科生。回忆小学及初中学习都很优秀,升入高中后,不适应寄宿
简述新课程倡导的学习方式。
下列语句中,错误的是()。
MELLIFLUOUS:SOUND::
最新回复
(
0
)