首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
针对一元二次方程概念与解法的一节复习课,教学目标如下: ①进一步了解一元二次方程的概念; ②进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等); ③会运用判别式判断一元二次方程根的情况; ④通过对相关问题的讨论,在理解相关知识的同时,体会数学
针对一元二次方程概念与解法的一节复习课,教学目标如下: ①进一步了解一元二次方程的概念; ②进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等); ③会运用判别式判断一元二次方程根的情况; ④通过对相关问题的讨论,在理解相关知识的同时,体会数学
admin
2017-09-19
39
问题
针对一元二次方程概念与解法的一节复习课,教学目标如下:
①进一步了解一元二次方程的概念;
②进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等);
③会运用判别式判断一元二次方程根的情况;
④通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。
问题:
根据上述教学目标,完成下列任务:
为了落实上述教学目标①、②,请设计一个教学片段,并说明设计意图;
选项
答案
一、复习回顾 1.回顾一元二次方程与一元一次方程有什么区别?它们有什么共同点? 列出一些方程。与学生一起将方程分类 (1)x
2
+5x一6=0;(2)2x+5=1;(3)x+y+3=0; (4)(3—x)
2
+x
2
=9;(5)(y+2)(y—1)=7;(6)4x+1=3x+2。 要求:(1)引导学生观察回顾方程的特点;(2)通过对比复习一元一次方程定义和一元二次方程定义;(3)强调定义中体现的3个特钲:①整式;②一元;③2次。 2.要求学生用最顺手的方法解下列方程 (1)x
2
-121=0;(2)x
2
+3x=0;(3)(x+2)
2
=4; (4)x
2
一3x+2=0;(5)2x
2
+7x=4;(6)x
2
+2x-4=0。 思考:(1)方程具备什么特点做起来最顺手?(2)以上方程你选取了哪些方法? 二、习题教学 例题1:方程(m+2)x
|m|
+3mx+1=0是关于x的一元一次方程,m的值为( );若是关于x的一元二次方程。m的值为( )。 师生活动:教师出示问题,学生独立思考、回答。为了帮助学生有逻辑的思考,可追问以下问题。 追问1:一元一次方程的一般式是什么?m需要满足什么条件? 追问2:一元二次方程的一般式是什么?由此你能给出m需要满足的条件吗? 追问3:我们还学过哪种整式方程?写出一般式.比较你所学过的各种整式的方程,说明它们的未知数个数与次数。 设计意图:学生要会辨析几种整式方程的概念,分析出符合定义的未知数的次数。通过此题引导学生进一步理解一元二次方程的概念及一般式,回顾已学的其他整式的方程,加强知识的前后联系,帮助学生建立有关方程的知识体系。 例题2:解方程:x
2
一2x+1=25。你能给出哪些解法?你认为哪种解法最适合本方程? 师生活动:教师出示问题,学生独立思考、解答、展示。教师反馈并提出以下问题。 追问1:一元二次方程有哪些解法?他们在什么情况下最适用? 追问2:这几种解法之间有何联系?在基本思想上有何共同点? 设计意图:本题主要复习一元二次方程的解法,通过比较不同的解法,体会如何根据方程特点选择解法。方程左边可以写成完全平方式,所以可用配方法;也可将方程整理成一般式,用公式法;还可以用因式分解法。让学生深入思考这几种解法之间的联系,体会配方法的重要意义以及“降次”的基本思想。
解析
转载请注明原文地址:https://kaotiyun.com/show/7Ctv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
随着高铁的发展,我国城市经济带的效应显著增强,包括长三角、珠三角等多个“一小时生活圈”逐渐形成和完善,这将改变人们的生活方式,重新书写我国经济版图。这说明()。
社会主义协商民主就是在党的领导下,社会各个政党、阶层、团体、群众等,就共同关心或利益相关的问题,以适当方式进行协商,形成各方均可接受的方案,做出决策或决定,以实现整体的发展。发展社会主义协商民主有利于()。①我国发展西方主流民主形式
下列关于社会主义法律与社会主义道德关系的表述,正确的是()。
宋代徐玑在《黄碧》中说,“水清知酒好,山瘦识民贫”。其中所呈现的水与酒、山与民的关系告诉我们()。
宏观调控是保证社会再生产协调发展的必要条件,通过宏观调控可以保持经济总量平衡,抑制通货膨胀,促进重大经济结构优化,实现经济稳定增长。下列行为属于宏观调控经济手段的是()。
甲因多年瘫痪在床的母亲的请求,买来大量安眠药让其母一次性服下,最终导致其母死亡,甲的行为()。
(1)设,抛物线y=x2一2过点(t,t2一2)的切线与x轴的交点为(g(t),0),求g(t).(2)定义数列{xn}如下:x0=2,xn+1=g(xn),n=0,1,2,…证明:(上述求方程根的近似值的方法称为牛顿切线法)
如下图所示,设0<a<b,函数f(x)在[a,b]上连续,在(a,b)可微且f(x)>0,f(x)=f(b)。设l为绕原点O可转动的细棍(射线),放手后落在函数f(x)的图象上并支撑在点A(ζ,f(ζ))上,从直观上看。证明函数F(x)=在ζ处取得最大
下列内容属于《义务教育数学课程标准(2011年版)》第三学段“数与式”的是()。①有理数②方程③实数④代数式⑤整式与分式
函数f(x)=xlnx在(0,+∞)上是()。
随机试题
A、1B、2C、3D、5C
子产实行的确认土地私有合法性的制度是()
(2010年)管道长度L不变,管中流动为层流,允许的水头损失hf不变,若直径d变为原来的2倍时,且不计局部损失,流量将变为原来的()倍。
安全保证计划是施工组织设计的重要组成部分,下列项目属于计划内容的是()。
()的成立标志着国际评估业走向国际化协助发展的道路。
根据《中华人民共和国出境入境管理法》的规定,下列几类外国人中,()属于不批准出境的。
依据《宪法》规定,有权决定直辖市进入紧急状态的机关是()。
哲学上称之为一元论的是指
真理原则要求是()
Forthispart,youareallowed30minutestowriteashortessayonthetopicofIsOfferingSeatsCompulsoryforYoungPassenge
最新回复
(
0
)