首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Look at the Size of Those Things! Sauropods(蜥脚龙)unprecedented bulk has long posed a thorny problem for biologists. How did t
Look at the Size of Those Things! Sauropods(蜥脚龙)unprecedented bulk has long posed a thorny problem for biologists. How did t
admin
2013-09-26
83
问题
Look at the Size of Those Things!
Sauropods(蜥脚龙)unprecedented bulk has long posed a thorny problem for biologists. How did they get to be so big? Why have no other land animals reached such massive proportions before or since? There have not been convincing answers to these questions. Until now.
"We now have a coherent theory on how dinosaur gigantism evolved," says Martin Sander, a paleontologist at the University of Bonn in Germany. For six years, Sander has headed an international team of scientists put together to tackle the gigantism mystery. It turns out that sauropods had a unique set of biological features that combined to propel them to unrivalled sizes.
Bigger is better
Sander’s starting point was observations made by the 19th-century paleontologist(古生物学家)Edward Drinker Cope, who noticed that animal lineages(血统)tend to get bigger over evolutionary time, starting out small and leaving ever bigger descendants. This process came to be known as Cope’s rule.
Getting bigger has evolutionary advantages, explains David Hone, an expert on Cope’s rule at the Institute of Vertebrate Paleontology and Paleoanthropology. " You are harder to predict and it is easier for you to fight off competitors for food or for mates. But we also know that big animals are generally more vulnerable to extinction," he says. Larger animals eat more and breed more slowly than smaller ones, so their problems are greater when times are tough and food is scarce. So on one hand natural selection encourages animals to grow larger, but on the other it eventually punishes them for doing so.
This balance between opposing forces has prevented most land animals from exceeding about 10 tonnes.
Small fry
What struck Sander was the size imbalance between adult sauropods and their small eggs and clutch sizes. The nest sites also reveal no sign of parental care, further increasing the adults’ ability to produce lots of offspring.
Egg laying and a lack of parental care, however, cannot be the whole story as all dinosaurs laid eggs and few cared for their young. So Sander looked elsewhere in search of further pieces of the puzzle.
To understand dinosaur growth rates, thin sections of their bones are examined under microscopes. Most dinosaurs have growth lines in their bones, indicating the fitful growth typical of animals with a slow metabolism(新陈代谢). Sauropod bones, in contrast, have a pattern of continuous growth similar to that seen in mammals and birds. Sander concludes that sauropods had a fast metabolism, which enabled them to attain immense sizes relatively quickly. Research by his team on a 30-tonne Asian sauropod called mamenchisaurus(马门溪龙)shows how this rapid growth translated into astonishing weight gains. At its peak, it grew up to 2 tonnes a year. In comparison, an African elephant gains at most 200 kilograms in a year.
Fast growth is all well and good, but once an animal reaches an immense size, how does it deal with the demands of its body and its lifestyle? Sauropods all conformed to the same basic body plan: a long neck terminating with a small head, a huge barrel-like body and, inevitably, thick sturdy legs. Sander and others now argue that the creatures’ unique structural combination—inside and out—was key to its sizeable success.
In the 1980s, Jyrki Hokkanen of the University of Helsinki in Finland tackled one part of this problem—how to support and move a massive body. By analysing bone and muscle strength in large animals, he concluded that even the largest sauropods were nowhere near the theoretical upper limit for body size. "Brachiosaurus could have been at least a couple of times bigger and still have walked on land," he concluded. So, while a large sauropod would have been heavy, that in itself did not inhibit its size.
Bird-like lungs
A related problem is how to get enough oxygen. In 2003, Mathew Wedel of the Sam Noble Oklahoma Museum of Natural History solved this by showing that sauropods had bird-like lungs.
Birds breathe in a far more efficient way than mammals. When they inhale, air fills their lungs and also air sacs(气囊)further inside their body. Upon exhaling, fresh air from the air sacs flows out and replaces the air that was in the lungs. This means that the lungs contain a constant stream of fresh air and can extract up to two-and-a-half times as much oxygen per breath as a mammal.
Bird-like breathing would have helped to support a large size in a variety of ways. First, it solves the problem of getting enough oxygen. Secondly, the air sacs were located in, greatly reducing their weight. Finally, breathing like a bird would solve another problem; how the sauropods stopped themselves from overheating. A high metabolism coupled with a huge body, with its low surface area-to-volume ratio, would normally spell trouble. "Big sauropods could probably breathe to cool themselves off," says Wedel.
Anatomy(解剖学)
Anatomy also explains how an 80-tonne animal could obtain enough to eat. The largest land animals today are all vegetarians that survive by eating huge amounts of plant material of poor nutritional quality. This is because there is not enough higher-quality food such as fruits and seeds to sustain a large animal, but grasses, leaves and branches are much more abundant. It is assumed that this is true for the extinct giants, too.
Large sauropods probably needed to eat a tonne of vegetation a day, so how did they manage it? Sander sees the crane-like neck and small head as being the key.
The lightweight vertebrae(脊椎)allowed their necks to grow longer, which would have increased their feeding range, both side to side and up and down. This would have allowed them to stand still while their necks did all the work, helping to conserve energy.
What is more, instead of chewing their food, sauropods used their simple peg-like teeth to pluck leaves and branches from plants before swallowing them whole. This allowed them to cram in much more food per day than if they had spent time chewing. It also meant they had no need of heavy grinding teeth and the elaborate musculature(肌肉组织)that goes with them, reducing the mass of their heads and allowing their necks to grow even longer.
The nutrients from this huge unchewed meal would have been extracted by lengthy microbial fermentation inside their huge bodies. That, however, posed yet another problem. As flowering plants did not evolve until late in the sauropods’ reign, their diet was limited to plants. According to animal nutritionist Jurgen Hummel at the University of Bonn, it is commonly believed that such food is of exceptionally low nutritional quality. How did the sauropods manage to survive on this restricted diet?
Hummel set about trying to find out. In 2008, he simulated dinosaur digestion by placing samples of these primitive plants among the gut microbes of sheep. It turns out that many of the plants were more nutritious than they had been given credit for. " When you give the ancient plants enough time, they are digested quite reasonably. A long retention time in the digestive tract of a sauropod would have been the solution," he says.
With their unique combination of reproduction, growth and anatomy, sauropods were able to overcome the limits on body size that have constrained all other land animals, and it was a hugely successful design. The giant sauropods were a fixture of the dinosaur age, persisting for 145 million years.
After examining the bones of sauropods under microscopes, Sander finds that______.
选项
A、sauropods are different from most dinosaurs in metabolism
B、a slow metabolism enabled sauropods to attain huge bodies
C、mammals and birds are similar to sauropods
D、most dinosaurs died out because of their immense sizes
答案
A
解析
转载请注明原文地址:https://kaotiyun.com/show/7I27777K
0
大学英语六级
相关试题推荐
A、Itdoesn’trequireanyexaminations.B、Itpromotestheconceptofself-learning.C、Itallowsmoreflexibilityinstudents’sch
A、Sheshouldliveinthecountry.B、Sheshouldlivenearthespring.C、Hepreferstoliveinthecountry.D、Heagreeswiththew
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,youwillhave15minutestogooverthepassageq
Courtesyalsoincludesproperbehavioronthestreet.Properstreetbehaviorrequiresanice【C1】______ofattentionandinattent
A、Makingfriendsinaforeigncountry.B、SpanishandFrench.C、ForeignTV,radioandothermedia.D、Learningaforeignlanguage.
A、Hisphysicalappearanceandhisaction.B、Hiswayofspeakingandbehaving.C、Hislearningandbehavior.D、Hiswayofactinga
Ourcurrenteducationalsystemhasnotbeenableto__________(跟上当今世界经济和科技发展步伐).
Whatisthereasonthatmakestheauthordosomuchthingforothers?Inthelastparagraph,"Ithinkmyfather’swordsfoundt
PromotelearningandskillsforyoungpeopleandadultsEducationisaboutgivingpeopletheopportunitytodeveloptheirpo
ShouldWeCompareOurselvesWithOthers?1.有些人认为有比较才有进步2.有些人认为攀比会造成不良后果3.我的看法
随机试题
男性,55岁,患慢性肾小球肾炎10年,近1周来尿少、嗜睡,血压170/110mmHg,血用[酐680μmol/L.CO2CP12mmol/L,血K+7.8mmol/L,ECG示T波高尖,今日突然抽搐,意识丧失,心跳骤停死亡,死亡最可能的原因足
女性,40岁,反复手关节痛1年,曾诊断为类风湿关节炎,间断使用理疗和非甾体抗炎药,症状有缓解。近1个月来低热,关节痛加重。肘后出现多个皮下结节,检查ESR40mm/h,心脏彩超发现小量心包积液。考虑为类风湿关节炎活动。最适宜的治疗措施是
麻醉期间最常见的上呼吸道梗阻的原因是
旅行社超范围经营包括()。
以下关于等距量表的说法正确的有()。
【2015河北石家庄】美育可以促进学生道德品质的形成,艺术美和现实美都具有这种功效。()
据报道目前北京外来务工人员已近700万人,并逐步从传统的建筑、服务业等劳务性行业,向高技术、文化传媒等产业扩展。新生代外来务工人员对城市的贡献更广泛,贴合更密切,相较父辈,他们也更为强烈地渴盼融人生活、工作的城市。今天,在道路上,在办公室里,工厂、饭馆、商
孙先生的所有朋友都声称,他们知道某人每天抽烟至少两盒,而且持续了40年,但身体一直不错。不过可以确信的是,孙先生并不知道有这样的人,在他的朋友中也有像孙先生这样不知情的。
甲公司和乙公司签订购买盐酸3000升的合同。合同约定,乙公司购买盐酸3000升,并在签订合同时,乙公司支付了价款。甲公司委托丙运输公司将盐酸发运到乙公司指定的仓库。不料在运输途中,一罐盐酸从车上掉落,导致盐酸泄漏,将路上行人丁的左臂大面积灼伤。丙运输公
A、costmorethandigitaltextsB、costlessthandigitaltextsC、arenotgoodsourcesoftextbooksD、arealsogoodsourcesoftex
最新回复
(
0
)