设总体X一N(μ,σ2),μ,σ2未知,X1,X2,…Xn是来自X的样本,试确定常数C,使CY=C[(X1一X2)2+(X3一X4)2+(X5一X6)2]的期望为σ2.

admin2016-01-12  42

问题 设总体X一N(μ,σ2),μ,σ2未知,X1,X2,…Xn是来自X的样本,试确定常数C,使CY=C[(X1一X2)2+(X3一X4)2+(X5一X6)2]的期望为σ2

选项

答案E[(X1一X2)2]=D(X1一X2)+[E(X1一X2)]2 =D(X1)+D(X2)=2σ2(因X1,X2独立), 同理 E[(X3一X4)2]=E[(X5一X6)2]=2σ2, 于是 E{C[(X1一X2)2+(X3一X4)2+(X5一X6)2]} =C{E[(X1一X2)2]+E[(X3一X4)2]+E[(X5一X6)2]} =C(2σ2+2σ2+2σ2)=6Cσ2, 即有E(CY)=6Cσ2.根据题设,令E(CY)=6Cσ22,即得[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/7ZU4777K
0

相关试题推荐
随机试题
最新回复(0)