首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 求函数f(x)=∫1x2(x3一t)e-t3dt的单调区间与极值.
[2010年] 求函数f(x)=∫1x2(x3一t)e-t3dt的单调区间与极值.
admin
2019-04-05
75
问题
[2010年] 求函数f(x)=∫
1
x
2
(x
3
一t)e
-t
3
dt的单调区间与极值.
选项
答案
先正确求出y′及其驻点,然后利用命题1.4.2.2列表讨论,判断极值点并求出单调区间. 利用变限积分求导公式,由f(x)=x
2
∫
1
x
2
e
-t
2
dt-∫
1
x
2
te
-t
2
dt出得到 f′(x)=2x∫
1
x
2
e
-t
2
dt+x
2
e
-(x
2
)
2
.2x一x
2
e
(x
2
)
2
.2x,=2x∫
1
x
2
e
-t
2
dt. 令f′(x)=0得x=0,x=±1.于是f′(x)的符号及f(x)的单调性如下表所示: [*] 由此可见,f(x)在区间(一∞,一1]上单调减少,f(一1)=0是极小值,f(x)在区间[-1,0]上单调增加,f(0)=∫
0
1
te
-t
2
dt=一[*]是极大值,f(x)在区间[0,1]上单调减少,f(1)=0是极小值,f(x)在区间[1,+∞)上单调增加.
解析
转载请注明原文地址:https://kaotiyun.com/show/8XV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
判断下列函数的单调性:
证明:χ-χ2<ln(1+χ)<χ(χ>0).
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
随机试题
某日,A银行以X债券为履约担保,从B银行处融入一笔资金,约定交易期内,若X债券发生利息支付,利息归B银行所有。请问,A银行与B银行交易的债券业务类型是()。
简述法约尔关于经营和管理的概念及其管理原则。
关于水痘的治疗错误的是
A.仅肾盂扩张B.肾盂、肾大盏扩张,肾小盏无明显扩张C.肾盂、肾大盏和肾小盏明显扩张,肾皮质无明显变薄D.肾盂、肾大盏和肾小盏明显扩张,肾皮质明显变薄E.多个肾盏扩张,壁明显增厚,无明显肾盂扩张肾结核
重度妊高征的产科处理,下述哪项是错误的
代办开放式基金登记业务的机构,可以接受基金管理人委托,开办下列( )业务。
在工程项目招投标中应禁止()。
某企业对基本生产车间所需备用金采用定额备用金制度。当基本生产车间报销日常管理支出而补足其备用金定额时,应贷记的会计科目是()。
组织内部平衡是()。
Mr.Greyhastwosons,______arefamousdancers.
最新回复
(
0
)