首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,-M2,…,(-1)n-1Mn)T是该方程组的基础解系.
设齐次线性方程组 的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,-M2,…,(-1)n-1Mn)T是该方程组的基础解系.
admin
2016-10-20
112
问题
设齐次线性方程组
的系数矩阵记为A,M
j
(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果M
j
不全为0,则(M
1
,-M
2
,…,(-1)
n-1
M
n
)
T
是该方程组的基础解系.
选项
答案
因为A是(n-1)×n矩阵,若M
j
不全为0,即A中有n-1阶子式非零,故r(A)=n-1.那么齐次方程组Ax=0的基础解系由n-r(A)=1个非零向量所构成. [*] 按第一行展开,有D
i
=a
i1
M
21
-a
i2
M
2
+…+a
in
(-1)
1+n
M
n
. 又因D
i
中第一行与第i+1行相同,知D
i
=0.因而 a
i1
M
1
-a
i2
M
2
+…+a
in
(-1)
n-1
M
n
=0. 即(M
1
,-M
2
,…,(-1)
n-1
M
n
)
T
满足第i个方程(i=1,2,…,n-1),从而它是Ax=0的非零解,也就是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/8gT4777K
0
考研数学三
相关试题推荐
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设A,B是同阶正定矩阵,则下列命题错误的是().
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
利用已知函数的幂级数展开式,求下列幂级数的和函数,并指出其收敛区间:
用比较审敛法判别下列级数的收敛性:
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
随机试题
腹外疝的临床类型分为
马克思主义中国化的实质是()
吴荪甫是茅盾长篇小说《》的主人公。
王某在某商店买回一箱啤酒,后在开箱饮用该啤酒时,其中一瓶发生爆炸,将王某的左手手指炸伤,经治疗花去医药费300余元。王某到商店要求赔偿,商店声称此啤酒是从某批发商张某处购得,应向张某索赔。张某言道,我并没有将此啤酒直接售于你,再说,此爆炸应为产品质量问题,
A.其标签大小应当明显区别B.两者的包装颜色应当明显区别C.药品规格和包装规格均应相同的,其标签的内容、格式及颜色必须一致D.其标签应当明显区别或者规格项明显标注E.其包装、标签、说明书应当明显区别同一药品生产企业生产的同一药品,要求
肝的疏泄作用对机体最主要的影响是
下列法定刑为无期徒刑或者死刑的犯罪案件,属于经过20年以后必须追诉的案件有()。
“备案号”栏:()。“用途”栏:()。
ABC股份有限公司应收账款的编号由1000至5000,注册会计师拟选择其中40张进行审查。采用随机抽样法选择样本(随机数表在备选答案后),样本总体与表中前四位数对应,且确定起点为第一列第一行,路线为自上到下,自左向右,则注册会计师选择的第5个样本是(
2007年10月21日,中国共产党第十七次全国代表大会通过的关于《中国共产党章程(修正案)》的决议决定,在党章中把党的基本路线中的奋斗目标表述为把我国建设成为富强民主文明和谐的社会主义现代化国家,是因为
最新回复
(
0
)