已知a是一个实数. 求作可逆矩阵U,使得U一1AU是对角矩阵.

admin2017-10-21  24

问题 已知a是一个实数.
求作可逆矩阵U,使得U一1AU是对角矩阵.

选项

答案先求A的特征值. [*] A的特征值为a+1(二重)和a—2(一重). 求属于a+1的两个线性无关的特征向量,即求[A一(a+1)E]X=0的基础解系: [*] 得[A一(a+1)E]X=0的同解方程组 x1=x2+x3, 得基础解系η1=(1,1,0)T,η2=(1,0,1)T. 求属于a一2的一个特征向量,即求[A一(a一2)E]X=0的一个非零解: [*] 得[A一(a一2)E]X=0的同解方程组 [*] 得解η3=(一1,1,1)T. 令U=(η1,η2,η3),则 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/9KH4777K
0

最新回复(0)