首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
admin
2016-10-24
65
问题
设
求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
选项
答案
|λE一A|=[*]=(λ+a一1)(λ一a)(λ一a一1)=0,得矩阵A的特征值为λ
1
=1一a,λ
1
=a,λ
3
=1+a. (1)当1一a≠a,1一a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1一a时,由[(1一a)E一A]X=0得ξ
1
=[*];λ
2
=a时,由(aE一A)X=0得ξ
2
=[*];λ
3
=1+a时,由[(1+a)E一A]X=0得ξ
3
=[*] [*] (2)当a=0时,λ
1
=λ
3
=1,因为r(E一A)=2,所以方程组(E一A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当a=[*]时,λ
1
一λ
2
=[*] 因为[*]=2,所以方程组[*]=0的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/bEH4777K
0
考研数学三
相关试题推荐
设边长为a的正方形平面薄板的各点处的面密度与该点到正方形中心的距离的平方成正比,求该薄片的质量.
证明如下的平行四边形法则:2(|a|2+|b|2)=|a+b|2+|a-b|2,说明这一法则的几何意义.
设有方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当a>1时,级数收敛.
用向量法证明:三角形两边中点的连线平行于第三边,且长度等于第三边长度的一半.
设f(x,y)=2x2+y2,求▽f(1,2),并用它来求等量线f(x,y)=6在点(1,2)处的切线方程.画出f(x,y)的等量线、切线与梯度向量的草图.
设A与B均为n,阶矩阵,且A与B合同,则().
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
假设二维随机变量(X,Y)在矩形G={丨x,y)丨0≤x≤2,0≤y≤1}上服从均匀分布,记求U和V的相关系数r.
随机试题
在Word2010的编辑状态下,对插入文档的图片不能进行的操作是________。
规定企业成员在共同的活动中应遵循的规章制度及行为准则的是()
患者,男性,62岁。慢性咳嗽、咳痰10余年。有冠心病病史5年,平时无症状。昨日因胃溃疡大出血急诊手术治疗,手术后第1天出现呼吸困难,伴发热。动脉血气分析(呼吸空气时):pH7.48,PaO250mmHg(6.7kPa),PaCO230mmHg(4.0kPa
A.20°~35°B.10°~15°C.20°~40°D.90°E.60°~90°手的休息位时腕关节背伸角度是
外盘大于内盘,通常股价会()
实现了新中国成立以来党的历史上具有深远意义的伟大转折的会议是()
列宁指出:“马克思的全部理论,就是运用最彻底、最完整、最周密、内容最丰富的发展论去考察现代资本主义。自然,他也就要运用这个理论去考察资本主义的即将到来的崩溃和未来共产主义的未来的发展。”在展望未来社会的问题上,马克思主义经典作家提出并自觉运用的方法论原则是
差异备份、增量备份、完全备份三种备份策略的备份速度由快到慢依次为()。
静态数据成员在()进行初始化。
Acarismadeupofmorethan30000parts.Eachpartinanewcarisasweakasababy.Soanewcarrequirespropercareands
最新回复
(
0
)