首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 二阶常系数非齐次线性微分方程y"-4y′+3y=2e2x的通解为________.
[2007年] 二阶常系数非齐次线性微分方程y"-4y′+3y=2e2x的通解为________.
admin
2019-05-10
41
问题
[2007年] 二阶常系数非齐次线性微分方程y"-4y′+3y=2e
2x
的通解为________.
选项
答案
求出对应的齐次方程的通解及原方程的一个特解,其和即为所求的通解, 也可用凑导数法求之. 解一 其特征方程为λ
2
一4λ+3=0,其特征根为λ
1
=1,λ
2
=3.对应齐次微分方程 y"一4y′+3y=0的通解为Y=C
1
e
x
+C
2
e
3x
. 又设非齐次微分方程y"一4y′+3y=2e
2x
的特解为y
*
=Ae
2x
,将其代入该非齐次方程得到A=一2,故所求通解为 y=Y+y
*
=C
1
e
x
+C
2
e
3x
一2e
2x
, C
1
与C
2
为任意常数. 解二 原方程可化为 y"一3y′一(y′一3y)=(y′一3y)′一(y′一3y)=2e
2x
. e
-x
(y′一3y)′+(e
-x
)′(y′一3y)一2e
x
, 即 [e
-x
(y′一3y)]′=2e
x
, 故 e
-x
(y′一3y)一2e
x
+C
0
, 即 y′一3y=2e
2x
+C
0
e
x
. 又 e
-3x
y′+(e
-3x
)′y=2e
-x
+C
0
e
-2x
, 即 (e
-3x
y)′=2e
-x
+C
0
e
-2x
, 故 e
-3x
y=一2e
-x
一(1/2)C
0
e
-2x
+C
2
, 所以其通解为y=一2e
2x
+C
1
e
x
+C
2
e
3x
,其中C
1
=一C
0
/2,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/9NV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上可导,且|f′(χ)|<M,证明:
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
设=b其中a,b为常数,则().
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中厂是可微函数,计算并化成最简形式.
曲线在t=1处的曲率k=___________.
设α1=,其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
随机试题
某女士,因数日来白带多,伴有血性,恐有癌症来就诊,检查宫颈糜烂,糜烂面约占整个宫颈面的1/2。应诊断为()。
各类休克的共同点为
大中桥所用的钢筋,高强钢丝应有出厂试验说明书,其中大于16mm的钢筋和高强钢丝在使用前应抽样做机械性能试验。()
教师在选择教学方法时要遵循下列哪些步骤和要求?()
阅读给定资料,针对农村留守老人面临的困境提出对策。要求:观点明确,条理清楚,语言流畅,对策可行。字数不超过200字。材料11.农村留守老人是随着我国城镇化进程逐步加快而产生的一批群体,这部分群体,因家中子女进入城镇经商、务工,晚年养老
【2015-5】集中体现杜威教育目的价值取向的观点是()。
盗窃、抢夺武器装备、军用物资罪与盗窃、抢夺枪支弹药爆炸犯罪的主要区别是()。
已知a=00101010B和b=40D,下列关系式成立的是__________。
Hespokeslowlysothateveryone______whathehadsaid.
WhatisthepurposeofToastmastersclub?
最新回复
(
0
)