首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 二阶常系数非齐次线性微分方程y"-4y′+3y=2e2x的通解为________.
[2007年] 二阶常系数非齐次线性微分方程y"-4y′+3y=2e2x的通解为________.
admin
2019-05-10
48
问题
[2007年] 二阶常系数非齐次线性微分方程y"-4y′+3y=2e
2x
的通解为________.
选项
答案
求出对应的齐次方程的通解及原方程的一个特解,其和即为所求的通解, 也可用凑导数法求之. 解一 其特征方程为λ
2
一4λ+3=0,其特征根为λ
1
=1,λ
2
=3.对应齐次微分方程 y"一4y′+3y=0的通解为Y=C
1
e
x
+C
2
e
3x
. 又设非齐次微分方程y"一4y′+3y=2e
2x
的特解为y
*
=Ae
2x
,将其代入该非齐次方程得到A=一2,故所求通解为 y=Y+y
*
=C
1
e
x
+C
2
e
3x
一2e
2x
, C
1
与C
2
为任意常数. 解二 原方程可化为 y"一3y′一(y′一3y)=(y′一3y)′一(y′一3y)=2e
2x
. e
-x
(y′一3y)′+(e
-x
)′(y′一3y)一2e
x
, 即 [e
-x
(y′一3y)]′=2e
x
, 故 e
-x
(y′一3y)一2e
x
+C
0
, 即 y′一3y=2e
2x
+C
0
e
x
. 又 e
-3x
y′+(e
-3x
)′y=2e
-x
+C
0
e
-2x
, 即 (e
-3x
y)′=2e
-x
+C
0
e
-2x
, 故 e
-3x
y=一2e
-x
一(1/2)C
0
e
-2x
+C
2
, 所以其通解为y=一2e
2x
+C
1
e
x
+C
2
e
3x
,其中C
1
=一C
0
/2,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/9NV4777K
0
考研数学二
相关试题推荐
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
若f(-χ)=-f(χ),且在(0,+∞)内f′(χ)>0,f〞(χ)>0,则在(-∞,0)内().
设f(χ)在(-∞,+∞)内可微,且f(0)=0,又f′(lnχ)=求f(χ)的表达式.
证明:∫01χm(1-χ)ndχ=∫01χn(1-χ)mdχ,并用此式计算∫01(1-χ)50dχ.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.(1)求A的全部特征值;(2)当k为何值时,A+kE为正定矩阵?
曲线在t=1处的曲率k=___________.
I(χ)=在区间[-1,1]上的最大值为_______.
随机试题
下列说法正确的是
2012年3月31日甲公司应付某金融机构一笔贷款100万元到期。因发生财务困难,短期内无法支付。当日,甲公司与金融机构签订债务重组协议,约定减免甲公司债务的20%,其余部分延期两年支付,年利率为5%(相当于实际利率),利息按年支付。金融机构已为该项贷款计提
在西方教育史上,被认为是现代教育的代言人的教育家是()
秦朝的中央集权制,汉朝的“罢黜百家,独尊儒术”,隋朝创立科举制度,从教育目的的理论角度来说,属于()。
alternativeenergy
地理学家和历史学家过去一直持有的观点认为南极是在1820年左右第一次被发现的。但是有些16世纪的欧洲地图上显示着与南极相似的一片区域,虽然那时的探险家从未见到过它。因此,有些学者争论说该大陆是被古代人发现并被画到地图上的,而大家知道这些古代人的地图曾为欧洲
有如下程序:#include<iostream>usingnamespacestd;classshapes{protected:intx,y;public:void
Whatdoesthewomanwanttodo?
A、 B、 C、 B
Accordingtothepassage,girlsarevictimsofthegendergapintechnologybecause______.Theresearchongirlsandcomputers
最新回复
(
0
)