首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明: (Ⅰ)a1能由a2,a3线性表示; (Ⅱ)a4不能由a1,a2,a3线性表示。
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明: (Ⅰ)a1能由a2,a3线性表示; (Ⅱ)a4不能由a1,a2,a3线性表示。
admin
2017-01-14
51
问题
已知r(a
1
,a
2
,a
3
)=2,r(a
2
,a
3
,a
4
)=3,证明:
(Ⅰ)a
1
能由a
2
,a
3
线性表示;
(Ⅱ)a
4
不能由a
1
,a
2
,a
3
线性表示。
选项
答案
(Ⅰ)r(a
1
,a
2
,a
3
)=2<3[*] a
1
,a
2
,a
3
线性相关; 假设a
1
不能由a
2
,a
3
线性表示,则a
2
,a
3
线性相关。 而由r(a
2
,a
3
,a
4
)=3[*] a
2
,a
3
,a
4
线性无关[*]a
2
,a
3
线性无关,与假设矛盾。 综上所述,a
1
必能由a
2
,a
3
线性表示。 (Ⅱ)由(Ⅰ)的结论,a
1
可由a
2
,a
3
线性表示,则若a
1
能由a
1
,a
2
,a
3
线性表示[*]a
4
能由a
2
,a
3
线性表示,即r(a
2
,a
3
,a
4
)<3与r(a
2
,a
3
,a
4
)=3矛盾,故a
4
不能由a
1
,a
2
,a
3
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/9Ru4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
微分方程y"-2y’+2y=ex的通解为________.
设A是m×n矩阵,B是,n×m矩阵,则
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
已知α1=(﹣1,1,a,4)T,α2=(﹣2,1,5,a)T,α3=(a,2,10,1)T是四阶方阵A的属于三个不同特征值的特征向量,则口的取值为().
随机试题
(2020年青岛)杜威对西方哲学史中的“经验”概念进行了改造,这些改造包括()
某电信部门一周内共接到电话通话质量投诉600次,投诉的原因及其相应的投诉次数统计如下表:要求:应用主次因素分析法确定造成电话通话质量问题的主要原因、次要原因和一般原因。
公共关系危机管理的事中管理第一步应该是()。
下列各句中,没有语病的一句是()
女性,26岁。3年前因劳动后心慌、心悸、气促,诊断为风湿性二尖瓣狭窄。近3天咳嗽,咯血丝痰,夜间咳嗽加重,平卧位气促,被迫坐起后症状稍缓解。查体:血压120/80mmHg,心率90次/分整。S1增强、S2增强,A:MDM3/6隆隆样,收缩期前增强。超声心动
昼夜分阴阳,属于"阴中之阴"的时间是()
下列哪个选项是错误的?
隐性伤害,就是指在校园情境中由于教育方法、管理方式的不完善或失当等对学生身体和精神所造成的非直接的伤害。这种伤害,由于其伤害结果具有潜在性和迟滞性,很容易被人们所忽视,但它往往会对少年儿童脆弱的心灵造成无法估量的消极影响。根据上述定义,下列不属于隐性伤害的
在考生文件夹下有一个数据库文件“samp1.accdb”,里边已经设计好了表对象“tDoctor”“tOffice”“tPatient”和“tSubscribe”。请按以下操作要求,完成各种操作。在考生文件夹下有一个数据库文件“samp1.acc
A、B、C、D、A
最新回复
(
0
)