首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
admin
2016-07-29
50
问题
已知三元二次型x
T
z的平方项系数都为0,α=(1,2,一1)
T
满足Aα=2α.
①求x
T
Ax的表达式.
②求作正交变换x=Qy,把x
T
Ax化为标准二次型.
选项
答案
[*] 得2a一b=2,a一c=4,b+2c=一2,解出a=b=2,c=一2.此二次型为4x
1
x
2
+4x
1
x
3
—4x
2
x
3
. ②先求A特征值 [*] 于是A的特征值就是2,2,一4.再求单位正交特征向量组.属于2的特征向量是(A一2E)x=0的非零解. [*] 得(A一2E)x=0的同解方程组:x
1
一x
2
一x
3
=0.显然β
1
:(1,l,0)
T
是一个解,设第二个解为β
2
=(1,一l,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位化:记η
1
:β
1
/||β
1
||=[*] η
2
=β
2
/||β
2
||=[*] 属于一4的特征向量是(A+4E)x=0的非零解.求出β
3
=(1,一1,一1)
T
是一个解,单位化:记 η
3
=β
3
/||β
3
||=[*] 则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,一4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
一1
AQ是对角矩阵,对角线上的元素为2,2,一4.作正交变换x=Qy,它把f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
一4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/9WT4777K
0
考研数学三
相关试题推荐
平均利润率具有下降趋势的原因是()。
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
二次型f(x1,x2,x3)=x12+x22+x32-4x2x3的正惯性指数为().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
用文氏图和几何概率解释两个事件A与B相互独立的含义.
求下列复合函数的一阶偏导数(f是C(1)类函数):
选用适当的坐标计算下列积分:
如果函数f(x)当x→x。时极限为A,证明;并举例说明:如果当x→x。时|f(x)|有极限,f(x)未必有极限.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设f(x)为[0,1]上的单调增加的连续函数,证明
随机试题
期中考试后,老师让同学们针对成绩进行反思总结。甲同学说:“一分耕耘一分收获,我这次考试考前进行了充分的复习,我尽了自己最大的努力。”乙同学说:“别人太强了,我太难了,我天生就不是学习的料,再怎么复习也没有用。”丙同学说:“我这次考得好,主要是因为复习的都考
弹性人力资源规划的重点是()
降钙素降低血钙和血磷的主要机制是
口腔颌面一般检查不包括以下哪种检查
银行业从业人员应当坚持同业间公平、有序竞争的原则,下列()行为采用了不正当竞争手段。
商业银行应当在接到核查通知的()个工作日内向征信服务中心作出核查情况的书面答复。
下列关于各类期权的说法,正确的有()。
2005年5月份全国基本型乘用车的产量是()。2006年5月份全国乘用车销量最大的车型是()。
说明:本题中指数的计算方法为:当年的数值与上一年数值的比乘以100。举例来说。假设第一年的数值为m,第二年的数值为n,则第二年的指数为100×(n/m)。假设1995年的国内生产总值为200亿,那么1996年的国内生产总值为()。
MedicineDirectionsTaketwotabletswithwarmwater,followedbyonetableteveryeighthours,asrequired.Formaximumnig
最新回复
(
0
)