首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
admin
2016-07-29
88
问题
已知三元二次型x
T
z的平方项系数都为0,α=(1,2,一1)
T
满足Aα=2α.
①求x
T
Ax的表达式.
②求作正交变换x=Qy,把x
T
Ax化为标准二次型.
选项
答案
[*] 得2a一b=2,a一c=4,b+2c=一2,解出a=b=2,c=一2.此二次型为4x
1
x
2
+4x
1
x
3
—4x
2
x
3
. ②先求A特征值 [*] 于是A的特征值就是2,2,一4.再求单位正交特征向量组.属于2的特征向量是(A一2E)x=0的非零解. [*] 得(A一2E)x=0的同解方程组:x
1
一x
2
一x
3
=0.显然β
1
:(1,l,0)
T
是一个解,设第二个解为β
2
=(1,一l,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位化:记η
1
:β
1
/||β
1
||=[*] η
2
=β
2
/||β
2
||=[*] 属于一4的特征向量是(A+4E)x=0的非零解.求出β
3
=(1,一1,一1)
T
是一个解,单位化:记 η
3
=β
3
/||β
3
||=[*] 则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,一4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
一1
AQ是对角矩阵,对角线上的元素为2,2,一4.作正交变换x=Qy,它把f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
一4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/9WT4777K
0
考研数学三
相关试题推荐
调整平等主体的公民之间、法人之间、公民和法人之间的财产关系和人身关系的法律规范
上层建筑是由意识形态和政治法律制度及设施、政治组织等两部分构成的,其中社会意识形态是指()。
毛泽东同志说:“‘实事’就是客观存在着的一切事物,‘是’就是客观事物的内部联系,即规律性,‘求’就是我们去研究。”毛泽东同志还把实事求是形象地比喻为“有的放矢”。毛泽东同志所说的“矢”是()。
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
设P(A)=0或1,证明A与其他任何事件B相互独立.
利用定积分的几何意义求出下列积分:
求由下列方程所确定的隐函数y=y(x)的导数dy/dx:(1)y=1-xey;(2)xy=ex+y;(3)xy=yx;(4)y=1+xsiny.
假设随机变量X1、X2、X3、X4相互独立,且同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1,2,3,4),求行列式的概率分布.
设f(x)为连续函数,且F(x)则f’(x)等于().
设随机变量X取非负整数值的概率为P{X=n}=an,则EX=___________.
随机试题
要加大技术研发的投入,通过深化国有企业改革,形成企业自主创新的机制,同时通过落实国家关于鼓励自主创新的各项政策措施,引导企业增加技术开发的投入。只有形成一批具有自主知识产权的核心技术,才能立于不败之地。上述文字阐述的主旨是()。
根据以下资料。回答下列问题。按2004-2009年科技论文平均增长速度,()年以后论文总数将会翻番(结果按四舍五入计)。
患者,男,58岁。颅内压增高,表现为有规律呼吸几次后,突然停止呼吸,间隔几秒钟后又开始呼吸,周而复始,其呼吸类型为
关于生物脱氮除磷的说法,正确的有()。
建设项目可能造成跨行政区域的不良环境影响,有关环境保护部门对该项目的环境影响评价结论有争议的,其环境影响评价文件由()审批。
重大事故应急救援体系应实行分级响应机制,其中一级紧急情况()。
封闭式基金只能采用()分红。
下列关于企业从被投资单位撤回投资时取得资产的企业所得税税务处理的说法,正确的是()。
所谓__________,一般指人们的认识能力,即认识客观事物的基本能力,是认识活动中表现出来的那些稳定的心理特征。
A.肺通气量B.肺泡通气量C.最大通气量D.解剖无效腔气量E.肺泡无效腔气量每分钟吸入肺泡的新鲜空气量是
最新回复
(
0
)