首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
admin
2016-07-29
96
问题
已知三元二次型x
T
z的平方项系数都为0,α=(1,2,一1)
T
满足Aα=2α.
①求x
T
Ax的表达式.
②求作正交变换x=Qy,把x
T
Ax化为标准二次型.
选项
答案
[*] 得2a一b=2,a一c=4,b+2c=一2,解出a=b=2,c=一2.此二次型为4x
1
x
2
+4x
1
x
3
—4x
2
x
3
. ②先求A特征值 [*] 于是A的特征值就是2,2,一4.再求单位正交特征向量组.属于2的特征向量是(A一2E)x=0的非零解. [*] 得(A一2E)x=0的同解方程组:x
1
一x
2
一x
3
=0.显然β
1
:(1,l,0)
T
是一个解,设第二个解为β
2
=(1,一l,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位化:记η
1
:β
1
/||β
1
||=[*] η
2
=β
2
/||β
2
||=[*] 属于一4的特征向量是(A+4E)x=0的非零解.求出β
3
=(1,一1,一1)
T
是一个解,单位化:记 η
3
=β
3
/||β
3
||=[*] 则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,一4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
一1
AQ是对角矩阵,对角线上的元素为2,2,一4.作正交变换x=Qy,它把f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
一4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/9WT4777K
0
考研数学三
相关试题推荐
根据我国刑法规定,对于危害国家安全和严重破坏社会秩序的一些犯罪,可以剥夺犯罪者的政治权利,包括剥夺()。
武汉市肺炎疫情防控指挥部发布通知,明确武汉市住宅小区封闭管理主要措施,要求住宅小区一律实行封闭管理,小区居民出入一律严格管控。老旧小区、开放式居住区通过打围方式实现硬隔离。出入口安排人员24小时值班值守,测温登记,审核放行。这一做法()
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设A,B是同阶正定矩阵,则下列命题错误的是().
求下列三重积分
利用极坐标将积分,化成一元函数积分式,其中f连续.
设z=xf(y/x)+(x-1)ylnx,其中f是任意二阶可微函数,求证:
设函数f(x)住[0,+∞)上连续,单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0).
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
随机试题
1948年3月,吉林省人民政府迁回吉林市。()
在设计程序时,应采纳的原则之一是()。
简述性格的应用必须重视的几个方面。
电子传递链中氧化与磷酸化偶联的部位是
某建筑工地工人午饭后十多分钟,先后有人发生口唇,指甲,全身皮肤青紫,并有精神萎靡、头晕、头痛、腹痛、腹泻、恶心、呕吐。最可能的诊断是
男孩,7岁,诊断为“肾病综合征”,因水肿、尿少,给予利尿消肿治疗,患儿发生腹胀,乏力,膝反射减弱,心音低钝,心电图出现U波,治疗中需及时补充
甲在商场买了一个日产日立牌电动剃须刀,认为质量有明显缺陷,向市工商局举报。市工商局经查认定该把剃须刀确系假冒产品,查封了商场尚未出售的10箱该商品,对该商场作出罚款2000元的处罚决定。该商场不服,向区人民法院起诉。在诉讼过程中,被告工商局仅提供顾客甲购买
当一个公司的股东反对公司的筹资意见时,往往是由于公司采纳了()
我国的红树林海岸在()可以看到。
预防残疾的体系中,减少暴力属于( )。
最新回复
(
0
)