首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2, …,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2, …,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0
admin
2015-07-22
86
问题
设有两个n维向量组(Ⅰ)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
, …,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
-λ
1
)β
1
+…+(k
s
-λ
s
)β
s
=0, 则 ( )
选项
A、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…α
s
及β
1
,…,β
s
均线性无关
C、α
1
,…α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为0的k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
使得
(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
-λ
2
)β
1
+…+(k
s
-λ
s
)β
2
=0,整理得
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
2
)+…+λ
s
(α
s
一β
s
)=0,从而得α
1
+β
1
,α
s
+β
s
,α
1
一β
1
,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/BfU4777K
0
考研数学三
相关试题推荐
2022年3月4日,北京2022年冬残奥会开幕式在国家体育场隆重举行,最后一棒火炬手,点燃主火炬的人是()。
改革开放的历史性启动和我国现代化建设的持续高速展开,推动了改革、发展和稳定成为当代中国最为显著的社会历史进程,同时也使得三者之间的关系成为具有全局性和长远性意义的重大战略关系。下列关于如何处理改革、发展、稳定的关系的说法,正确的是
商品具有使用价值和价值两个因素或两种属性,是使用价值和价值的矛盾统一体。下列关于商品的使用价值的说法,正确的是
随着科技的进步尤其是“互联网+”的发展,出现了代驾、陪购师、网络主播等新兴职业。这些新兴职业在给社会带来效率或便利的同时,也面临着如何规范的问题,制定相关的法律法规刻不容缓。由此可见()。
设β,α1,α2线性相关,β,α2,α3线性无关,则().
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
利用带有佩亚诺型余项的麦克劳林公式求下列极限:
用函数极限的定义证明:
设fˊ(sin2x)=cos2x+tan2x(0<x<1),则f(x)=_________.
随机试题
冠状动脉发生粥样硬化病变最多见于()
抗原抗体反应中有补体参与的反应pH为
膀胱癌最常见和最早出现的症状是
下列项目中应通过“其他应收款”核算的有()。
(2016年)在其他条件不变的情况下,关于单利计息、到期一次还本付息的可转换债券的内含报酬率,下列各项中正确的有()。
将当前表中所有的学生年龄加1,可使用命令: 【】年龄WITH年龄+1
已知事件对应的程序代码如下:PrivateSubCommand0_Click()DimJAsIntegerJ=100CallGetData(J+5)MsgBoxJEndSubPrivateSubGetData(ByRef
WhichofthefollowingsentencesexpressesSPECULATION(推测)?
Youmaydepend_______him.Heis_______honestman.
AsSesameStreetkicksoffits40thanniversaryseasonTuesday,withfirstladyMichelleObamaandBroadwaystarLin-ManuelMira
最新回复
(
0
)