首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(v).
随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(v).
admin
2018-06-14
26
问题
随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:
(Ⅰ)U=XY的概率密度f
U
(u);
(Ⅱ)V=|X—Y|的概率密度f
V
(v).
选项
答案
由于X与Y相互独立且密度函数已知,因此我们可以用两种方法:分布函数法与公式法求出U、V的概率密度. (Ⅰ)分布函数法.由题设知(X,Y)联合概率密度 f(x,y)=f
X
(x)f
Y
(y)=[*] 所以U=XY的分布函数为(如图3.3) F
U
(u)=P{XY≤u}=[*]f(x,y)dxdy. 当u≤0时,F
U
(u)=0;当u≥1时,F
U
(u)=1;当0<u<1时, F
U
(u)=∫
0
u
dx∫
0
1
dy+∫
u
1
dx[*]dx=u—ulnu. 综上得 [*] (Ⅱ)分布函数法.由题设知 [*] 所以V=|X—Y|的分布函数F
V
(v)=P{|X—Y|≤v}. 当v≤0时,F
V
(v)=0;当v>0时, F
V
(v)=P{|X—Y|≤v}=P{一v≤X—Y≤v} =[*]f(x,y)dxdy. 由图3.4知,当v≥1时,F
V
(v)=1;当0<v<1时, F
V
(v)=[*]f(x,y)dxdy=D的面积 =1—2×[*]×(1—v)
2
=1一(1—v)
2
, 其中D={(x,y)|0≤x≤1,0≤y≤1,|x一y|≤v}. 综上得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/BmW4777K
0
考研数学三
相关试题推荐
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=一f(ξ)cotξ.
求∫013x2arcsinxdx.
设L:y=e一x(x≥0).求由y=e一x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).
求下列不定积分:
判断级数的敛散性.
已知随机变量X的概率密度(Ⅰ)求分布函数F(x);(Ⅱ)若令Y=F(X),求Y的分布函数FY(y).
袋中装有大小相同的10只球,编号为0,1,2,…,9.从中任取一只,观察其号码,按“大于5”,“等于5”,“小于5”三种情况定义一个随机变量X,并写出X的分布律和分布函数.
(Ⅰ)设X与Y相互独立,且X-N(5,15),Y-χ2(5),求概率P{X-5>(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<X<3.5)∩(6.3<S2<9.6)}.
讨论级数的敛散性,其中{xn}是方程x=tanx的正根按递增顺序编号而得的序列.
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足f(0)=0及0≤f(x)≤ex-1;(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别交于点P2和P1;(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于
随机试题
设α(x)=1一cosx,β(x)=2x2,则当x→0时,下列结论中正确的是()。[2012年真题]
损益表中公益金主要用于企业()。
在招股说明书中,发行人应披露近两年关联交易对其财务状况和经营成果的影响,包括在营业收入或营业成本中所占的比例。()
根据下面材料回答下列题。2009年1~10月,该市对欧盟、日本和美国三大贸易伙伴的出口额在地方出口额中的合汁比重为49%。问地方出口额是多少亿美元?
大额可转让定期存单不同于传统定期存单的特点有()。
男,54岁。反复水肿、尿少5个月,肾活检病理报告为早期膜性肾病,下列说法错误的是
甲趁其妻上夜班之机,乔装打扮后外出作案。当甲来到一昏暗僻静之处,见前面有一妇女,便将其击倒后实施奸淫。事毕,又强抢该妇女的挎包一只,内有钱财若干,然后逃离现场。被害妇女连夜到公安机关报案。当被害妇女报案后回到家中时,发现自己的挎包已在家中桌上,知是自己丈夫
下列民法原则中被称为“帝王条款”的是()
【B1】【B19】
Nooneworddemonstratedtheshiftincorporations’attentioninthemid-1990sfromprocessestopeoplemorevividlythanthesi
最新回复
(
0
)