首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为 求Z=X—Y的概率密度函数.
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为 求Z=X—Y的概率密度函数.
admin
2016-11-03
34
问题
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为
求Z=X—Y的概率密度函数.
选项
答案
Z=X—Y的分布函数为 F
z
(z)=P(Z≤z)=P(X—Y≤z)=[*]f(x,y)dxdy. 因随着z的取值范围不同,区域x—y≤z与f(x,y)的取值非零的区域即正方形区域0≤x≤2,0≤y≤2相交的情况不一样,需分别讨论.因f(x,y)取非零值的定义域的边界点为(0,0),(0,2),(2,2),(2,0),相应地,z=x—y的可能取值为z=0—0=0,z=0—2=-2,z=2—2=0,z=2—0=2.因而z应分下述情况分别求出分布函数:(1)z<-2,(2)一2≤x<0,(3)0≤z<2,(4)z≥2. (1)当z<-2时,区域x—y<z(这时当x=0时,一y<一2,即y>2)与正方形0≤x≤2,0≤y≤2没有公共部分(参见下图),所以 [*] F
z
(z)=[*]0dxdy=0. (2)当一2≤z<0时(这时当x=0时,则一2≤x—y=一y≤0,即0≤y≤2),区域x—y≤z与正方形0≤x≤2,0≤y≤2的公共部分如下图阴影区域所示,则 [*] [*] (3)当0≤z<2时,区域x一y<z与正方形区域0≤x≤2,0≤y≤2的公共部分如下图阴影部分所示,故 [*] [*] (4)当z≥2时,x一y=z≥2,当x=0时,y=-2,当y=0时,x≥2,因而区域x—y<z在x—y=z的上方,它包含整个正方形区域(参见下图),故 [*] F
z
(z)=[*]dy=1. 综上得到 [*] 故 [*]
解析
求二维随机变量(X,Y)函数(尤其是其线性函数)的分布函数常利用其定义求之.求时需对X—Y≤z中z的不同取值情况分别确定f(x,y)不为0的区域与{(x,y)|x—y≤z}的交集.在此交集上进行二重积分,求出分布函数,再求导,即可求得概率密度函数.
转载请注明原文地址:https://kaotiyun.com/show/CTu4777K
0
考研数学一
相关试题推荐
[*]
[*]
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
设场A={x3+2y,y3+2z,z3+2x},曲面S:x2+y2+z2=2z内侧,则场A穿过曲面指定侧的通量为().
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1及S2的方程;
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.957
随机试题
女性,26岁,患Graves病用抗甲状腺药物治疗中,因精神刺激发生甲亢危象,哪种治疗方案为佳
PCR反应的基本过程是
复方阿司匹林片在临床上常用于解热、镇痛、消炎。【处方】阿司匹林268g对乙酰氨基酚136g咖啡因33.4g淀粉266g淀粉浆(15%~17%)85g滑石粉25g(5%)轻质液状石蜡25g
根据法律和宪法,下列选项中哪些事项应由全国人大决定?()
函数y=C1e-x+C2(C1,C2为任意常数)是微分方程y’-y’2y=0的()。
下列算法中,可用于数字签名的是______。
根据汉字国标码GB2312-80的规定,将汉字分为常用汉字(一级)和非常用汉字(二级)两级汉字。一级常用汉字按______排列。
JackfeelsthatEnglishishardtolearnJackfindsto______learnEnglish.
______shehasbeenworkinginChinaforonlytwoyears,shespeaksfluentChinese.
KeepOurSeasCleanBytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billion.
最新回复
(
0
)