首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为 求Z=X—Y的概率密度函数.
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为 求Z=X—Y的概率密度函数.
admin
2016-11-03
26
问题
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为
求Z=X—Y的概率密度函数.
选项
答案
Z=X—Y的分布函数为 F
z
(z)=P(Z≤z)=P(X—Y≤z)=[*]f(x,y)dxdy. 因随着z的取值范围不同,区域x—y≤z与f(x,y)的取值非零的区域即正方形区域0≤x≤2,0≤y≤2相交的情况不一样,需分别讨论.因f(x,y)取非零值的定义域的边界点为(0,0),(0,2),(2,2),(2,0),相应地,z=x—y的可能取值为z=0—0=0,z=0—2=-2,z=2—2=0,z=2—0=2.因而z应分下述情况分别求出分布函数:(1)z<-2,(2)一2≤x<0,(3)0≤z<2,(4)z≥2. (1)当z<-2时,区域x—y<z(这时当x=0时,一y<一2,即y>2)与正方形0≤x≤2,0≤y≤2没有公共部分(参见下图),所以 [*] F
z
(z)=[*]0dxdy=0. (2)当一2≤z<0时(这时当x=0时,则一2≤x—y=一y≤0,即0≤y≤2),区域x—y≤z与正方形0≤x≤2,0≤y≤2的公共部分如下图阴影区域所示,则 [*] [*] (3)当0≤z<2时,区域x一y<z与正方形区域0≤x≤2,0≤y≤2的公共部分如下图阴影部分所示,故 [*] [*] (4)当z≥2时,x一y=z≥2,当x=0时,y=-2,当y=0时,x≥2,因而区域x—y<z在x—y=z的上方,它包含整个正方形区域(参见下图),故 [*] F
z
(z)=[*]dy=1. 综上得到 [*] 故 [*]
解析
求二维随机变量(X,Y)函数(尤其是其线性函数)的分布函数常利用其定义求之.求时需对X—Y≤z中z的不同取值情况分别确定f(x,y)不为0的区域与{(x,y)|x—y≤z}的交集.在此交集上进行二重积分,求出分布函数,再求导,即可求得概率密度函数.
转载请注明原文地址:https://kaotiyun.com/show/CTu4777K
0
考研数学一
相关试题推荐
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
曲面(z-a)ψ(x)+(z-b)φ(y)=0与x2+y2=1,z=0所围立体的体积V=________(其中φ为连续正值函数,a>0,b>0).
二元函数f(x,y)=在点(0,0)处().
随机试题
∫02|x-1|dx=__________.
肿瘤组织分化越高()
缩窄性心包炎可能的主要病因是
交流整流电源作为继电保护直流电源时,直流母线电压,在最大负荷时保护动作不应低于额定电压的(),最高电压不应超过额定电压的115%,并应采取稳压、限幅和滤波酌措施。
高速公路联网收费系统中推荐采用的通行券有一次性纸质磁性券、一次性纸质二维条形码券和()三种。
下列变量中,通常属于数值型变量的有()。
2009年8月24日至10月4日家庭办公网民人均一周有效浏览时间趋势及增长率下列说法正确的是()。
中国近代制度化教育兴起的标志是清朝末年的“废科举,兴学校”,以及颁布了全国统一的教育宗旨和______。
中国近代教育的开启者是
A、Theycanbeusednormallytomailaletter.B、Theycanonlybeusedforexhibition.C、Theyareusedtoattractmoretourists.
最新回复
(
0
)