首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为 求Z=X—Y的概率密度函数.
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为 求Z=X—Y的概率密度函数.
admin
2016-11-03
64
问题
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为
求Z=X—Y的概率密度函数.
选项
答案
Z=X—Y的分布函数为 F
z
(z)=P(Z≤z)=P(X—Y≤z)=[*]f(x,y)dxdy. 因随着z的取值范围不同,区域x—y≤z与f(x,y)的取值非零的区域即正方形区域0≤x≤2,0≤y≤2相交的情况不一样,需分别讨论.因f(x,y)取非零值的定义域的边界点为(0,0),(0,2),(2,2),(2,0),相应地,z=x—y的可能取值为z=0—0=0,z=0—2=-2,z=2—2=0,z=2—0=2.因而z应分下述情况分别求出分布函数:(1)z<-2,(2)一2≤x<0,(3)0≤z<2,(4)z≥2. (1)当z<-2时,区域x—y<z(这时当x=0时,一y<一2,即y>2)与正方形0≤x≤2,0≤y≤2没有公共部分(参见下图),所以 [*] F
z
(z)=[*]0dxdy=0. (2)当一2≤z<0时(这时当x=0时,则一2≤x—y=一y≤0,即0≤y≤2),区域x—y≤z与正方形0≤x≤2,0≤y≤2的公共部分如下图阴影区域所示,则 [*] [*] (3)当0≤z<2时,区域x一y<z与正方形区域0≤x≤2,0≤y≤2的公共部分如下图阴影部分所示,故 [*] [*] (4)当z≥2时,x一y=z≥2,当x=0时,y=-2,当y=0时,x≥2,因而区域x—y<z在x—y=z的上方,它包含整个正方形区域(参见下图),故 [*] F
z
(z)=[*]dy=1. 综上得到 [*] 故 [*]
解析
求二维随机变量(X,Y)函数(尤其是其线性函数)的分布函数常利用其定义求之.求时需对X—Y≤z中z的不同取值情况分别确定f(x,y)不为0的区域与{(x,y)|x—y≤z}的交集.在此交集上进行二重积分,求出分布函数,再求导,即可求得概率密度函数.
转载请注明原文地址:https://kaotiyun.com/show/CTu4777K
0
考研数学一
相关试题推荐
-π/8
A、 B、 C、 D、 C
[*]
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:T=问平均内径μ取何值时,销售
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f〞(x)<0,且f(1)=fˊ(1)=1,则().
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解.求这个方程和它的通解;
计算曲面积分,其中∑是曲面2x2+2y2+z2=4的外侧.
随机试题
由于项目进度控制不同的需要和不同的用途,业主方和项目各参与方可以编制多个不同的建设工程项目进度计划系统,包括()。
错语的病因是()。
A.横断面研究B.病例对照研究C.队列研究D.现场实验E.社区实验
可引起射血分数增大的因素是
根据我国民事诉讼法及相关司法解释的规定,人民法院在下列哪些情况下,可以进行缺席判决?()
建筑边坡中扶壁式挡墙适用于()。
《建筑施工场界环境噪声排放标准》适用于()。
阴山以南的沃野不仅是游牧民族的苑囿,也是他们进入中原地区的跳板。只要占领了这个沃野,他们就可以强渡黄河,进入汾河或黄河河谷。如果他们失去了这片沃野,就失去了生存的依据,史载“匈奴失阴山之后,过之未尝不哭也”,就是这个原因;在另一方面,汉族如果要排除从西北方
当前我国既处于发展的重要战略机遇期,又处于社会矛盾凸显期。要充分认识新形势下加强和创新社会管理的重大意义,统筹经济建设、政治建设、文化建设、社会建设以及生态文明建设,把社会管理工作摆在更加突出的位置。社会管理的过程,就是不断解决矛盾的过程。一些地
下列叙述中正确的是( )。
最新回复
(
0
)