首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
admin
2017-10-19
55
问题
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
选项
答案
令φ(x)=f(x)一g(x),显然φ(a)=φ’(a)=0,φ"(x)>0(x>a). 由[*] 得φ’(x)>0(x>a); 再由[*] 得φ(x)>0(x>a),即f(x)>g(x).
解析
转载请注明原文地址:https://kaotiyun.com/show/CaH4777K
0
考研数学三
相关试题推荐
设函数则x=0是f(x)的
设f(x)在[a,b]上可导,f’(x)+[f(x)]2一=0,且,则在(a,b)内必定
设z=f(x2+y2,xy,x),其中f(u,v,w)二阶连续可偏导,求
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
设变换,求常数a。
判断级数的敛散性.
判断级数的敛散性.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
求极限
随机试题
女孩,8岁,半月前有发热,体温38.6℃~39.8℃,稀水便,7~8次/H,一周后自愈。近2天感疲乏、头晕,晕厥一次。入院查面色苍白,脉缓而规则,血压65/40mmHg,心界扩大,心率50次/分,有大炮音。该患儿ECG检查的结果最有可能是
下列哪一项不是小肠吸收功能试验?
A.引吐法B.泻下法C.排出法D.油疗法E.平息法将腹内疾病尤其是赤巴病排出体外常用的方法是
一次支付复利系数可表示为( )。
建筑安装工程施工中生产工人的流动施工津贴属于()。【2007年考试真题】
2017年1月1日,A公司以每股10元的价格购入B上市公司(以下简称“B公司”)股票100万股,并由此持有B公司2%股权。投资前A公司与B公司不存在关联方关系。A公司将对B公司的该项投资作为以公允价值计量且其变动计入当期损益的金融资产核算。2018年1月1
递延年金具有如下特点()。
深化党和国家机构改革,是贯彻落实党的十九大决策部署的一个重要举措,是全面深化改革的一个重大动作,是推进国家治理体系和治理能力现代化的一次集中行动。短短一年多时间,十九届三中全会部署的改革任务总体完成,取得一系列重要理论成果、制度成果、实践成果。继续深化党和
会社に
InChina,whenyoumeetafriendinthestreet,youwouldsay,"Whereareyougoing?"or"Haveyoueatenyet?"ButinEnglandpeopled
最新回复
(
0
)