首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
admin
2015-07-10
42
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值与特征向量.
选项
答案
(1)令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0→x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0 x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0→x
1
α
3
+x
2
α
4
+…+x
n-2
α
n-2
=0 … x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
2
=…=x
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
)[*],令P=(α
1
,α
2
,…,α
n
),则P
-1
AP=[*]=B,则A与B相似,由|λE一B|=0→λ
1
=…=λ
n
=0,即A的特征值全为零,又r(A)=n一1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aα
n
=0α
n
(α
n
≠0),所以A的全部特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/CjU4777K
0
考研数学三
相关试题推荐
《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》提出了到2035年基本实现社会主义现代化远景目标。下列相关说法错误的是()。
2022年国务院政府工作报告指出,强化()导向,坚持“资金、要素跟着项目走”,合理扩大使用范围,支持在建项目后续融资,开工一批具备条件的重大工程、新型基础设施、老旧公用设施改造等建设项目。
2022年国务院政府工作报告指出,经济结构和区域布局继续优化。粮食产量()亿斤,创历史新高。
走中国工业化道路,必须积极探索适合我国情况的经济体制和运行机制。毛泽东主张企业要建立合理的规章制度和严格的责任制,同时要
调整平等主体的自然人、法人和非法人组织之间的人身关系和财产关系的法律规范是
设A,B是同阶正定矩阵,则下列命题错误的是().
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
求下列数项级数的和函数:
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
随机试题
关于反竞争性抑制剂的正确阐述是
纵隔疾病首选的影像学检查方法是
某幢写字楼,土堆面积4000m2,总建筑面积为9000m2,建成于1990年10月1日,土地使用权年限为1995年10月1日——2035年10月1日,土地使用权出让合同中未约定到期后不可续期。现在获得类似的40余年土地使用权价格为2000元/m2,建筑物重
有一列500m火车正在运行。若距铁路中心线600m处测得声压级为70dB,距铁路中心线1200m处有居民楼,则该居民楼的声压级是()dB。
()是确定利害关系者对于交流和沟通的要求——谁需要信息,需要什么样的信息,何时需要信息以及应怎样将信息传递到他们手中。
沥青路面检测中除平整度、纵断高程、厚度外,还应检测()。
契约型基金筹集的资金属于()。
以下()策略不是按营销渠道模式分类。
简述幼儿口语表达能力的发展特点。(山西)
AloeVitaminHandCreamArichyetlightweightnon-greasytexturethatactslikeagloveprovidingprotectionagainstharmfu
最新回复
(
0
)