首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
admin
2015-07-10
48
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值与特征向量.
选项
答案
(1)令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0→x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0 x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0→x
1
α
3
+x
2
α
4
+…+x
n-2
α
n-2
=0 … x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
2
=…=x
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
)[*],令P=(α
1
,α
2
,…,α
n
),则P
-1
AP=[*]=B,则A与B相似,由|λE一B|=0→λ
1
=…=λ
n
=0,即A的特征值全为零,又r(A)=n一1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aα
n
=0α
n
(α
n
≠0),所以A的全部特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/CjU4777K
0
考研数学三
相关试题推荐
网络用户利用网络服务实施侵权行为的,权利人有权通知网络服务提供者采取删除、屏蔽、断开链接等必要措施。根据相关法律的规定,此时网络服务提供者应当承担的义务有()。
2021年11月3日上午,2020年度国家科学技术奖励大会在北京人民大会堂隆重召开。中国航空工业集团有限公司()院士和清华大学()院士获国家最高科学技术奖。
根据《中华人民共和国民法典》,业主对建筑物内的住宅、经营性用房等专有部分享有(),对专有部分以外的共有部分享有共有和共同管理的权利。
2022年中央一号文件指出,保护特色民族村寨。实施“()”。推动村庄小型建设项目简易审批,规范项目管理,提高资金绩效。
党的十九大报告指出,()是中国特色社会主义最本质的特征,是中国特色社会主义制度的最大优势。
结合材料回答问题:中关村,我国改革开放后第一个高新技术产业开发区,第一个国家自主创新示范区。在这里,有90多所大学,在校大学生接近loo万,国家级科研院所400多家,还有两万多家高科技企业,是全球创业投资最活跃的区域之一;在这里,有一批有责任、有
求下列初值问题的解:(1)y〞-3yˊ+2y-1,y|x=0=2,yˊ|x=0=2;(2)y〞+y+sin2x=0,y|x=π=1,yˊ|x=π=1;(3)y〞-yˊ=2(1-x),y|x=0=1,yˊ|x=0=1;(4)y〞+y=ex+cosx,
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
用比值审敛法判别下列级数的收敛性:
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
随机试题
驾驶摩托车变更车道时,应提前开启转向灯,注意观察,保持安全距离,驶入要变更的车道。
气门密封性试验常见方法有_______、_______、_______。
地高辛采用每日维持量给药法的原因是
长期的焦虑紧张,容易让人生病,这体现了医学心理学的哪个基本观点()
病例对照研究中,选择偏倚不包括( )。
甲国白鹭公司与乙国黑鹰公司签订了一项进口化工废料到甲国的合同。该化工废料是被《控制危险废物越境转移及其处置的巴塞尔公约》列为附件中的危险废物,现位于乙国境内。甲乙两国都是公约的缔约国。根据相关的国际法规则,下列判断哪些是正确的?
下列哪项不属于隋唐时期的法律适用情况?()
我省降水量最少的县是豫北的(),年降水量只有530多毫米。
案头研究和实地研究的区别是什么?
中国古代建立了完备的监察制度,确立于秦汉,完备于隋唐宋,加强于明清。古代监察制度的设置,对当代中国的法律监督制度的建设有何启示?
最新回复
(
0
)