首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Mystery of Time If you can read a clock, you can know the time of day. But no one knows what time itself is. We can not see
Mystery of Time If you can read a clock, you can know the time of day. But no one knows what time itself is. We can not see
admin
2010-03-26
37
问题
Mystery of Time
If you can read a clock, you can know the time of day. But no one knows what time itself is. We can not see it. We can not hear it. We know it only by the way we mark its passing. For ail our success in measuring the tiniest parts of time, time remains one of the great mysteries of the universe.
One way of thinking about time is to imagine a world without time. There could be no movement, because time and movement can not be separated. A world without time could exist only as long as there were no changes, for time and change are linked. When something changes, you know time has passed. In the real world, changes never stop. Some changes happen only once in a while, like an eclipse of the moon. Others happen repeatedly, like the rising and setting of the sun. People have always noted natural events that repeat themselves. When people began to count such events, they began to measure time.
In early human history, the only changes that seemed to repeat themselves evenly were the movements of objects in the sky. The most easily seen result of these movements was the difference between light and darkness.
The sun rose in the eastern sky, producing light. It moved overhead and sank in the western sky, causing darkness. The appearance and disappearance of the sun was even and unfailing. The periods of light and darkness it created were the first accepted periods of time. We have named each period of light and darkness one day. People saw the sun rise higher in the sky during the summer than in winter. They counted the days that passed from the sun’s highest position until it returned to that position. They counted 365 days. We now know that is the time Earth takes to move once around the sun. We call this period of time a year.
Early humans also noted changes in the moon. As it moved across the night sky, they must have wondered. Why did it look different every night? Why did it disappear? Where did it go?
Even before they learned the answers to these questions, they developed a way to use the moon’s changing faces to tell time. The moon was "full" when its face was bright and round. They counted the number of times the sun appeared between full moons. They learned that this number always remained the same, about 29 suns. Twenty-nine suns equaled one moon. We now know this period of time as one month.
Early people hunted animals and gathered wild plants. They moved in groups, or tribes, from place to place in search of food. Then people learned to plant seeds and grow crops. They learned to raise animals. They found they no longer needed to move from one place to another to survive. As hunters, people did not need a way to measure time. As farmers, however, they had to plant crops in time to harvest them before winter. They had to know when the seasons would change. So they developed calendars.
No one knows when the first calendar was developed. But it seems possible that it was based on moons, or lunar months. When people started farming, the wise men of the tribes became very important. They studied the sky. They gathered enough information to be able to say when the seasons would change. They announced when it was time to plant crops.
The divisions of time we use today were developed in ancient Babylonia 4,000 years ago. Babylonian astronomers believed the sun moved around the Earth every 365 days. They divided the trip into 12 equal parts or months. Each month was 30 days. Then they divided each day into 24 equal pans, or hours. They divided each hour into 60 minutes, and each minute into 60 seconds.
Humans have used many devices to measure time. The sundial was one of the earliest and simplest. A sundial measures the movement of the sun across the sky each day. It has a stick or other object that rises above a flat surface. The stick, blocking sunlight, creates a shadow. As the sun moves, so does the shadow of the stick across the flat surface. Marks on the surface show the passing of hours and perhaps minutes.
The sundial worked well only when the sun was shining. So other ways of measuring the passing of time were invented. One device was the hourglass. It used a thin stream of falling sand to measure time. The hourglass was shaped like the number eight: wide at the top and bottom but very thin in the middle. It took exactly one hour for all the sand to drop from top to bottom through a tiny opening in the middle. Then you turned the hourglass upside down. And it began to mark the passing of another hour.
By the 1700s, people had developed mechanical clocks and watches. And today, many of our clocks and watches are electronic.
So we have devices to mark the passing of time, but what lime is it now? Clocks in different parts of the world do not show the same time at the same time. This is because time on earth is set by the sun’s position in the sky above us. We all have a 12 o’clock noon each day. Noon is the time the sun is highest in the sky. But when it is 12 o’clock noon where I am, it may be 10 o’clock at night where you are.
As international communications and travel grew, it became clear we needed a way to establish a common time for all pans of the world.
In 1884, an international conference divided the world into 24 time areas, or zones. Each zone represents one hour. The astronomical observatory in Greenwich, England, was chosen as the starting point for the time zones. Twelve zones are west of Greenwich. Twelve are east. The time at Greenwich as measured by the sun is considered by astronomers to be Universal time. We also know it a Greenwich Mean Time.
Time is the greatest discovery in the history of human beings.
选项
A、Y
B、N
C、NG
答案
C
解析
时间很重要,也许它真称得上是人类历史上最伟大的发现。文章中(特别是第二段)也有相当多的内容论述时间是如何重要,却没有论述它是“最”重要的。
转载请注明原文地址:https://kaotiyun.com/show/Cuk7777K
0
大学英语四级
相关试题推荐
A、Twohundreddollars.B、Threehundreddollars.C、Twothousanddollars.D、Threethousanddollars.CHowmuchmoneydoesthemanw
【B1】【B16】
A、Thewomanisthinkingaboutapplyingforajob.B、Theyarediscussingamovie.C、Theyareplanningasurprisepartyforafrie
A、Tofindoutaboutaprofessor.B、Toaskifshecanregisterforacourse.C、Totransfertoanotherschool.D、Tofindoutabout
Accordingtotheauthor,educationissuretobelimitedtoacertainscopewithouttheuseofmedia.Interactiveonlinelearni
MusictoMyEarsWhenothershaddoubts,myfatherbelievedinme.AsaboygrowingupinShenyang,China,Ipracticedthepi
A、Grades.B、Privacy.C、Sports.D、Money.DWhatdoesthemanseemtobeconcernedabout?推理题。从男士的话Thinkofthemoneyyou’dsave可以判
Butnomatterhowgoodabrainhehastobeginwith,anindividualwillhavealoworderofintelligence______(除非他有机会学习).
A、Teacherandstudent.B、Customerandrepairman.C、Patientanddoctor.D、Bossandsecretary.A
随机试题
火的特性是()
A.斑疹色暗B.风湿顽痹C.寒凝瘀滞出血D.肺痈、肠痈E.水肿、小便不利红花善治
正常小儿白细胞分类出现两次交叉的年龄是
[2014年,第16题]设D是由y=x,y=0及所围成的第一象限区域,则二重积分等于()。
《中华人民共和国建筑法》规定:“国家推行建筑工程监理制度,()可以规定实行强制监理的建筑工程的范围。”
贷款发放时,银行要核查提款申请书中的()等要素,确保提款手续正确无误。
一般资料:求助者,女性,23岁,学校教师。 案例介绍:求助者的同事在交通事故中死亡,求助者受到惊吓后出现多虑,担心母亲及家人被车撞死,反复考虑这个问题,明知不一定被车撞死,但还是控制不住地想,想摆脱但摆脱不了。以后病情加重,反复检查自己的教案有没有
教师未经学生同意按考分高低排列名次,张榜公布,侵犯了学生的()。
如图所示的几何体是由一些小立方搭成的,则这个几何体的俯视图是().
以下描述中,是8086 工作于最大模式的特点的是( )。 Ⅰ 适用于多处理机系统 Ⅱ 通过编程来设定的工作模式 Ⅲ 需要总线控制器8288 Ⅳ M/IO引脚可以直接引用
最新回复
(
0
)