首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)=(x—x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=x0时连续. (1)证明f(x)在点x=x0处可导; (2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
设函数f(x)=(x—x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=x0时连续. (1)证明f(x)在点x=x0处可导; (2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
admin
2016-01-25
38
问题
设函数f(x)=(x—x
0
)
n
φ(x)(n为任意自然数),其中函数φ(x)当x=x
0
时连续.
(1)证明f(x)在点x=x
0
处可导;
(2)若φ(x)≠0,问函数f(x)在x=x
0
处有无极值,为什么?
选项
答案
(1)由于 [*] 即f(x)在x=x
0
处可导,且f′(x
0
)=0. (2)由于φ(x)在x=x
0
处连续,且φ(x
0
)≠O,所以φ(x)在点x
0
的充分小的邻域(x
0
一δ,x
0
+δ)内与φ(x
0
)同号,于是f(x)的符号只与n的奇偶性有关. ①若n为奇数,则经过x
0
时,f(x)的值变号,所以在x=x
0
处没有极值; ②若n为偶数,则(x—x
0
)
n
>0(x≠x
0
). 当φ(x
0
)>0,且0<|x-x
0
|<δ时,f(x)=(x-x
0
)
n
φ(x)>0=f(x
0
),所以在x=x
0
处有极小值f(x
0
). 当φ(x
0
)<0,且0<|x-x
0
|<δ时,f(x)=(x-x
0
)
n
φ(x)<0=f(x
0
),所以在x=x
0
处有极大值f(x
0
).
解析
用导数定义证明(1);用极值的定义证明(2).
转载请注明原文地址:https://kaotiyun.com/show/DKU4777K
0
考研数学三
相关试题推荐
M国是厨房电器的生产大国,其生产的抽油烟机在许多国家都获得了好评,但是相同质量的抽油烟机出口到H国却销量惨淡,在调整了抽油烟机的外形之后销量仍不见起色。M国商人经过市场调研发现,H国人喜欢大火爆炒,产生的油烟比其他国家大得多,M国生产的抽油烟机的排风量不能
结合材料回答问题:“奉献”二字,历来为人所尊崇,在时间长河中历久弥新。奋进道路上,越是面临艰巨任务、严峻挑战,越需要无私奉献,越呼唤奉献精神。新冠肺炎疫情防控期间,84岁的钟南山院士无惧病魔、挺身而出,“95后”女医生4天3夜骑行300
封建主义思想文化反映了等级基础上的人的依赖关系,体现了封建社会的本质。而资产阶级思想是以极端个人主义为核心的一种剥削阶级思想意识。资产阶级思想与封建主义思想在中国的第一次正面交锋是
列宁说:“实践标准实质上决不能完全地证实或驳倒人类的任何表象。这个标准也是这样的‘不确定’,以便不让人的知识变成‘绝对’,同时它又是这样的确定,以便同唯心主义和不可知论的一切变种进行无情的斗争。”这表明
马克思、恩格斯在《共产党宣言》1872年德文版序言中指出,“不管最近25年来的情况发生了多大的变化,这个《宣言》中所阐述的一般原理整个说来直到现在还是完全正确的……这些原理的实际运用,正如《宣言》中所说的,随时随地都要以当时的历史条件为转移。”这一论述,实
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
利用高斯公式计算第二类曲面积分:
在“充分而非必要”、“必要而非充分”和“充分必要”三者中选择一个正确的填人下列空格内:(1)f(x)在点x。连续是f(x)在点x。可导的__________条件;(2)f(x)在点x。的左导数fˊ-(x。)及右导数fˊ+=(x。)都存在且相等是f(x)
随机试题
“星法院”颁布特别法令,严厉管制出版活动始于()
A.良性肿瘤B.恶性肿瘤C.潜在恶性肿瘤D.肿瘤样病损E.继发性肿瘤
脂质体的特点为
在计量信用风险的方法中,下列不属于《巴塞尔新资本协议》中标准法缺点的是()。
商业银行债券投资的策略包括分散化投资策略、梯形投资策略和杠铃投资策略。()
各个时代的统一性是如此紧密,古今之间的关系是双向的。对现实的曲解必定源于对历史的无知,而对现实一无所知的人,要了解历史也必定是徒劳无功的。对这段文字理解正确的是()。
纯粹的教育书院出现于()。
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2
例如:男:小王,帮我开一下门,好吗?谢谢!女:没问题。您去超市了?买了这么多东西。问:男的想让小王做什么?A开门√B拿东西C去超市买东西
Forlaymenethnologyisthemostinterestingofthebiologicalsciencesfortheveryreasonthatitconcernsanimalsintheirno
最新回复
(
0
)