首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)=(x—x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=x0时连续. (1)证明f(x)在点x=x0处可导; (2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
设函数f(x)=(x—x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=x0时连续. (1)证明f(x)在点x=x0处可导; (2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
admin
2016-01-25
42
问题
设函数f(x)=(x—x
0
)
n
φ(x)(n为任意自然数),其中函数φ(x)当x=x
0
时连续.
(1)证明f(x)在点x=x
0
处可导;
(2)若φ(x)≠0,问函数f(x)在x=x
0
处有无极值,为什么?
选项
答案
(1)由于 [*] 即f(x)在x=x
0
处可导,且f′(x
0
)=0. (2)由于φ(x)在x=x
0
处连续,且φ(x
0
)≠O,所以φ(x)在点x
0
的充分小的邻域(x
0
一δ,x
0
+δ)内与φ(x
0
)同号,于是f(x)的符号只与n的奇偶性有关. ①若n为奇数,则经过x
0
时,f(x)的值变号,所以在x=x
0
处没有极值; ②若n为偶数,则(x—x
0
)
n
>0(x≠x
0
). 当φ(x
0
)>0,且0<|x-x
0
|<δ时,f(x)=(x-x
0
)
n
φ(x)>0=f(x
0
),所以在x=x
0
处有极小值f(x
0
). 当φ(x
0
)<0,且0<|x-x
0
|<δ时,f(x)=(x-x
0
)
n
φ(x)<0=f(x
0
),所以在x=x
0
处有极大值f(x
0
).
解析
用导数定义证明(1);用极值的定义证明(2).
转载请注明原文地址:https://kaotiyun.com/show/DKU4777K
0
考研数学三
相关试题推荐
在社会主义核心价值观中,既反映了人们对美好社会的期望和憧憬,又是衡量现代社会是否充满活力又和谐有序的重要标志的价值追求是
中国历史的每一步向前,无不源于伟大民族精神的推动;中华民族的每一个成就,无不源于伟大民族精神的书写。伟大民族精神的核心是
洋务运动时期,洋务派首先兴办的是军用工业,1890年以前他们在全国各地共创办了20多个军工局厂。其中,当时国内最大的兵工厂是
以“大洪水”为题材和背景的洪水神话,是世界上流传范围最广、影响力最大的神话类型之一。世界上已有近两百个国家和民族用神话形式记载过历史上洪水泛滥的情景。面对洪水,不同民族人们的应对方式是存在差异的。洪水来袭,西方神话中人们的主要应对方式是寻找或建造避水工具逃
在原始社会,人们只有朴素的族群公有观念,不知“私有”为何物。随着以生产资料私有制为基础的生产方式的出现和原始社会的瓦解,私有观念以及与此相联系的思想相应产生。这表明
生态文明建设是指人类在利用和改造自然的过程中,主动保护自然,积极改善和优化人与自然的关系,建设健康有序的生态运行机制和良好的生态环境。生态文明的核心是
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
习近平总书记多次强调增强辩证思维能力的重要性,明确指出“辩证唯物主义是中国共产党人的世界观和方法论”。习近平同志在2019年4月22日上午主持召开中央财经委员会第四次会议时指出,经过几代人接续奋斗,总体而言,我国已经基本实现全面建成小康社会目标。目前,全面
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
随机试题
下列说法和相关人物对应正确的是()。
60岁的患者缺失3个月,余留牙正常,检查无残根.首选何种修复方式
混凝土散水、明沟,应设置伸缩缝,其延长米间距不得大于()m。
设备委托监理合同业主的义务为()。
在粗直径钢筋的机械连接中,钢筋连接接头断面强度有损耗的是()。
关于成本加酬金合同的说法,正确的是()。
当基金销售机构或基金销售人员的利益与基金投资人的利益发生冲突时,应当()保障基金投资人的合法利益。
晓美骑在马背上过河,他共有甲、乙、丙、丁4只马,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。晓美每次只能赶2只马过河,要把4只马都赶到对岸去,最少要多少分钟?
现行PC机所用的打印机与主机间最常用的接口是( )。
Whatarethespeakersmainlydiscussing?
最新回复
(
0
)