首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X服从标准正态分布N(0,1),在X=x(-∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1).求在Y=y条件下关手X的条件概率密度.
设随机变量X服从标准正态分布N(0,1),在X=x(-∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1).求在Y=y条件下关手X的条件概率密度.
admin
2016-10-20
63
问题
设随机变量X服从标准正态分布N(0,1),在X=x(-∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1).求在Y=y条件下关手X的条件概率密度.
选项
答案
依题意,X的概率密度为 [*] 在X=x的条件下,关于Y的条件概率密度为 [*] 根据条件概率密度的定义可得X与Y的联合概率密度为 [*] 根据二维正态分布的性质可知,二维正态分布(X,Y)的边缘分布是一维正态分布,于是Y的概率密度为 [*] 根据条件密度的定义可得 [*] 进一步分析,可将f
X|Y
(x|y)改写为如下形式: [*] 从上面式子可以看出,在Y=y条件下关于X的条件分布是正态分布[*]
解析
依题意已知X的分布及关于Y的条件分布,因此我们很容易求出X与Y的联合分布.然后直接应用条件密度公式求f
X|Y
(x|y).
转载请注明原文地址:https://kaotiyun.com/show/DMT4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
袋中有a只黑球,b只白球,现把球一只一只摸出,求第k次摸出黑球的概率(1≤k≤a+b).
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)