首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零方阵, 为齐次线性方程组BX=0的3个解向量.且AX=β3有非零解. (1)求a,b的值; (2)求BX=0的通解.
已知A,B为三阶非零方阵, 为齐次线性方程组BX=0的3个解向量.且AX=β3有非零解. (1)求a,b的值; (2)求BX=0的通解.
admin
2016-01-25
110
问题
已知A,B为三阶非零方阵,
为齐次线性方程组BX=0的3个解向量.且AX=β
3
有非零解.
(1)求a,b的值;
(2)求BX=0的通解.
选项
答案
(1)因B≠0,故r(B)≥1,因而BX=0的基础解系所含解向量的个数为 n一r(B)≤3—1=2个. 而β
1
,β
2
,β
3
均是BX=0的解,故β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*]=0 解得a=3b.又AX=β
3
有非零解,即β
3
可由A的3个列向量 [*] 线性表示,由观察易看出 α
3
=3α
1
+2α
2
. 可见,β
3
可由α
1
,α
2
线性表示,因此β
3
,α
1
,α
2
线性相关,于是 |β
3
,α
1
,α
2
|=[*]=0, 解得b=5,从而a=15. (2)由题设r(B)≥1,于是3一r(B)≤2,又已知β
1
,β
2
为BX=0的两个线性无关的解,故3一r(B)≥2,所以3一r(B)=2,β
1
,β
2
即可作为BX=0的基础解系,故通解为 X=k
1
β
1
+k
2
β
2
(k
1
,k
2
为任意常数).
解析
因r(B)≥1,故β
1
,β
2
,β
3
必线性相关.又由AX=β
3
知,β
3
可表示为A的3个列向量的线性组.由这两个线性关系式可求出a,b.
转载请注明原文地址:https://kaotiyun.com/show/DdU4777K
0
考研数学三
相关试题推荐
法律不是从来就有的,也不是永恒存在的,在法律发展史上先后产生了奴隶制法律、封建制法律、资本主义法律和社会主义法律。社会主义法律的基本属性是
恩格斯指出:“19世纪三大空想社会主义者的学说虽然含有十分虚幻和空想的性质,但他们终究是属于一切时代最伟大的智士之列的,他们天才地预示了我们现在已经科学地证明了其正确性的无数真理”。空想社会主义与科学社会主义的根本区别在于()。
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
袋中有a只黑球,b只白球,现把球一只一只摸出,求第k次摸出黑球的概率(1≤k≤a+b).
设一平面通过从点(1,-1,1)到直线的垂线,且与平面z=0垂直,求此平面的方程.
设求f(x)的间断点,并说明间断点所属类型.
求下列微分方程的通解:(1)yˊ+y=e-x;(2)yˊ+2xy=4x;(3)xyˊ=x-y;(4)(x2+1)yˊ+2xy=4x2;(5)xyˊ+y=xex;(6)yˊ+ytanx=cosx;(7)xyˊ+(1-x)y=e
A是n阶矩阵,且A3=0,则().
设非齐次线性微分方程yˊ+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().。
设f(x)为连续函数,且F(x)则f’(x)等于().
随机试题
以下选项中,不属于其他货币资金的是()
工作设计中的工作扩大化是指【】
简述影响人格形成和发展的因素。
灌石膏模型前,在孤立牙处插入小竹签的目的是
风险损失是()人身损害及财产经济价值的减少。
某项目发行的优先股面值100元,发行价格96元,发行成本2%,每年付息一次,固定股息率6%,所得税率为33%,通货膨胀率为2%,扣除通货膨胀影响的税前资金成本为()。
有价值的创意原则的应用是()。
()属于老年性生活认知偏差的主要表现。
请简述你对“正确把握语文教育特点”问题的认识。
外部不经济,是指一种经济行为对其本身和外部产生出来的负效益。下列选项中,属于外部不经济现象的是:
最新回复
(
0
)