首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线方程为y=e-x(x≥0). (Ⅰ)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ);并求满足V(a)=的a值; (Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴围成的平面图形的面积最
设曲线方程为y=e-x(x≥0). (Ⅰ)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ);并求满足V(a)=的a值; (Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴围成的平面图形的面积最
admin
2016-10-20
30
问题
设曲线方程为y=e
-x
(x≥0).
(Ⅰ)把曲线y=e
-x
,x轴,y轴和直线x=ξ(ξ>0)所围平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ);并求满足V(a)=
的a值;
(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴围成的平面图形的面积最大,并求出该面积.
选项
答案
(Ⅰ)[*] (Ⅱ)在曲线y=e
-x
上点[*]处的切线方程是 [*] 它与x轴的交点是(1+x
0
,0),它与y轴的交点是[*],于是切线与两坐标轴所围平面图形是两直角边长分别为|1+x
0
|和[*]的直角三角形,其面积为 [*] 令[*]可解出唯一驻点x
0
=1,又因[*],在x
0
=1有S’’(1)<0,故S在x
0
=1取得最大值,且maxS=S(1)=[*].即过曲线y=e
-x
(x≥0)上点[*]处的切线与两坐标轴所围成的平面图形的面积最大,且该面积是[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/DlT4777K
0
考研数学三
相关试题推荐
[*]
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
设空间区域Ω={(x,y,z)|x2+y2+z2≤a2},Ω1={(x,y,z)|x2+y2+z2≤a2,x≥0,y≥0,z≥0},则下列等式不成立的是__________.
要在海岛I与某城市C之间铺设一条地下光缆(如图2.12所示),经地质勘测后分析,每千米的铺设成本,在y>0的水下区域是c1,在y<0的地下区域是c2证明:为使得铺设该光缆的总成本最低,θ1和θ2应该满足c1sinθ1=c2sinθ2.
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
设函数f(x)在x=a的某个邻域内连续,且f(a)为极大值,则存在δ>0,当x∈(a一δ,a+δ)时,必有().
设函数f(x)在x=1的某邻域内连续,且有求f’(1),若又设f’’(1)存在,求f’’(1).
随机试题
Wehaven’theard______newsofhimsinceheleftthecompany.
若不及时治疗,有可能发展成走马牙疳的龈炎是()
按照FIDIC施工合同条件的约定,如果遇到了“一个有经验的承包商难以合理预见”的地下电缆,导致承包商工期延长和成本增加,则承包商有权索赔( )。
在sDH传输网中,具有交叉连接功能的基本网络单元有()。
政府的社会管理职能主要包括:
Oceanographyhasbeendefinedas"Theapplicationofallsciencestothestudyofthesea".Beforethenineteenthcentury,scien
准实验
甲与乙同到丙家做客,甲不慎将丙价值2000元的手机弄坏,而乙以为是自己弄坏的,遂赔偿丙一部同等价值的手机。后丙将该手机以3000元出售给丁。据此,下列说法正确的是()
深度为7的完全二叉树中共有125个结点,则该完全二叉树中的叶子结点数为
DescribetheTypeofBusinessVentureWhentalksaboutentitybusinessplan,thefirstthingcomingintoconsiderationisto
最新回复
(
0
)