首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A一aE)(A一6E)=0. (2)r(A—aE)+r(A一bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A一aE)(A一6E)=0. (2)r(A—aE)+r(A一bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
admin
2017-10-21
55
问题
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:
(1)(A一aE)(A一6E)=0.
(2)r(A—aE)+r(A一bE)=n.
(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
选项
答案
不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE) (1)→(2) 用关于矩阵的秩的性质,由(A一aE)(A一bE)=0.得到: r(A一aE)+r(A一bE)≤n, r(A一aE)+r(A一bE)≥r((A一aE)一(A一bE))=r((b一a)E)=n, 从而r(A一aE)+r(A一bE)=n. (2)→(3) 记k
a
,k
b
分别是a,b的重数,则有 k
a
≥n—r(A一aE)① k
b
≥n一r(A一bk)② 两式相加得n≥k
a
+k
b
≥n—r(A一aE)+n—r(A一bE)=n,于是其中“≥”都为”=”,从而① 和②都是等式,并且k
a
+k
b
=n. k
a
+k
b
=n,说明A的特征值只有a和b,它们都满足(λ一a)(λ一b)=0. ①和②都是等式,说明A相似于对角矩阵. (3)→(1) 4的特征值满足(λ一a)(λ一b)=0,说明A的特征值只有cz和6.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B一aE)(B一bE)=0.而(A一aE)(A一bE)相似于(B一aE)(B一bE),因此(A—aE)(A一bE)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EKH4777K
0
考研数学三
相关试题推荐
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P—1AP为对角阵.
设A~B,(1)求a,b;(2)求可逆矩阵P,使得P—1AP=B
设A~B,其中,则x=__________,y=__________.
设.求(1)|一2B|;(2)AB一BA.
判断级数的敛散性.
判别级数的敛散性,若收敛求其和.
证明.当x>0时,
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解址()
设求y(n).(0).
设A是n阶实对称矩阵,证明:存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx。
随机试题
行政处理决定的特征之一是()。
出票人划去汇票上的付款地并在旁边签章的行为属于()
Ifyouareoverinthedistrict,______onus.
出现戴阳证的临床意义是
甘草皂苷
依据法官职业道德规范,关于法官行为,下列哪些评论是正确的?(2008年试卷一第89题)
风险管理委员会通常需要的风险监测报告类型是()。
价格是市场机制的核心,是最灵敏的调节手段。()
若有以下程序main(){inta=-2,b=0;do{++b;)while(a++);printf("%d,%d\n",a,b);}则程序的输出结果是
A、 B、 C、 D、 E、 B
最新回复
(
0
)