首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A一aE)(A一6E)=0. (2)r(A—aE)+r(A一bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A一aE)(A一6E)=0. (2)r(A—aE)+r(A一bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
admin
2017-10-21
29
问题
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:
(1)(A一aE)(A一6E)=0.
(2)r(A—aE)+r(A一bE)=n.
(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
选项
答案
不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE) (1)→(2) 用关于矩阵的秩的性质,由(A一aE)(A一bE)=0.得到: r(A一aE)+r(A一bE)≤n, r(A一aE)+r(A一bE)≥r((A一aE)一(A一bE))=r((b一a)E)=n, 从而r(A一aE)+r(A一bE)=n. (2)→(3) 记k
a
,k
b
分别是a,b的重数,则有 k
a
≥n—r(A一aE)① k
b
≥n一r(A一bk)② 两式相加得n≥k
a
+k
b
≥n—r(A一aE)+n—r(A一bE)=n,于是其中“≥”都为”=”,从而① 和②都是等式,并且k
a
+k
b
=n. k
a
+k
b
=n,说明A的特征值只有a和b,它们都满足(λ一a)(λ一b)=0. ①和②都是等式,说明A相似于对角矩阵. (3)→(1) 4的特征值满足(λ一a)(λ一b)=0,说明A的特征值只有cz和6.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B一aE)(B一bE)=0.而(A一aE)(A一bE)相似于(B一aE)(B一bE),因此(A—aE)(A一bE)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EKH4777K
0
考研数学三
相关试题推荐
设,求f(x)的间断点,并分类.
判断级数的敛散性.
判断级数的敛散性.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
求常数a,b使得在x=0处可导.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设有幂级数(1)求该幂级数的收敛域;(2)证明此幂级数满足微分方程y"一y=一1;(3)求此幂级数的和函数.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
设随机变量X的密度函数是φ(x),且φ(一x)=φ(x),f(x)是X的分布函数,则对任意实数a,有
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
随机试题
报价阶段谈判的中心是()
患儿,男性,1岁。3天前发热38.5℃,热退后出现口腔溃疡,哭闹,拒食,流涎。检查:口腔黏膜片状充血,有数十个溃疡,有的互相融合,疮破溃后形成痂壳。最可能的诊断是
患者,男,60岁。因腹胀就诊,查体脾脏增大至脐下,质地坚实,表面光滑,切迹明显,无压痛,血象检查白细胞为80×109/L,中性杆状核和晚幼粒细胞为多,骨髓象见各系细胞极度增生,以粒系为主,粒细胞与红细胞计数比例增至30:1,应首先考虑的诊断是
在代理关系中,委托代理关系终止的条件包括( )。
上述网络计划的计算工期Tc为()天。关键路线是指在各线路中,有一条或几条线路的()。
下列各项中,有助于改善商业银行声誉风险管理的操作实践的有()。
公司分立的动机有()。
某企业采用托收承付结算方式销售一批商品,增值税专用发票注明的价款为l000万元,增值税税额为170万元;销售商品为客户代垫运输费10万元,增值税税额为1.1万元。全部款项已办妥托收手续。该企业应确认的应收账款为()万元。
市场份额属于平衡计分卡的()方面。
下面所述步骤中,()不是创建进程所必需的步骤。
最新回复
(
0
)