首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A一aE)(A一6E)=0. (2)r(A—aE)+r(A一bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A一aE)(A一6E)=0. (2)r(A—aE)+r(A一bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
admin
2017-10-21
48
问题
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:
(1)(A一aE)(A一6E)=0.
(2)r(A—aE)+r(A一bE)=n.
(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
选项
答案
不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE) (1)→(2) 用关于矩阵的秩的性质,由(A一aE)(A一bE)=0.得到: r(A一aE)+r(A一bE)≤n, r(A一aE)+r(A一bE)≥r((A一aE)一(A一bE))=r((b一a)E)=n, 从而r(A一aE)+r(A一bE)=n. (2)→(3) 记k
a
,k
b
分别是a,b的重数,则有 k
a
≥n—r(A一aE)① k
b
≥n一r(A一bk)② 两式相加得n≥k
a
+k
b
≥n—r(A一aE)+n—r(A一bE)=n,于是其中“≥”都为”=”,从而① 和②都是等式,并且k
a
+k
b
=n. k
a
+k
b
=n,说明A的特征值只有a和b,它们都满足(λ一a)(λ一b)=0. ①和②都是等式,说明A相似于对角矩阵. (3)→(1) 4的特征值满足(λ一a)(λ一b)=0,说明A的特征值只有cz和6.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B一aE)(B一bE)=0.而(A一aE)(A一bE)相似于(B一aE)(B一bE),因此(A—aE)(A一bE)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EKH4777K
0
考研数学三
相关试题推荐
讨论函数的连续性.
判别级数的敛散性,若收敛求其和.
求方程组的通解.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
求y"一2y’一e2x=0满足初始条件y(0)=1,y’(0)=1的特解.
将f(x)=*]展开成x一2的幂级数.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设求f(x)的间断点,并说明间断点的类型,如是可去间断点,则补充或改变定义使它连续.
设矩阵,问k为何值时,存在可逆阵P,使得P-1AP=A,求出P及相应的对角阵.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
随机试题
患者女,44岁,敏感多疑,怀疑单位同事有意和她作对,故意给其工作和生活设置障碍,近期经常听到耳边有人说话,对其行为进行评论。护士对其的心理护理中,正确的是
取得证券、期货投资咨询从业资格,但是未在证券、期货投资咨询机构执业的,其从业资格自取得之日起满()后自动失效。
以下各指标都可用于衡量商业银行的流动性,其中数值越高说明商业银行流动性越差的是()。
采用供应商管理库存策略,用户的库存决策权()。
下列关于碳水化合物的计算正确的是()。
已知a=(1,一1,1),b=(2,2,1),则a在b上的投影为().
中国第一部音乐史著作是()
通过问卷或访问对社区中的每一户家庭进行调查,了解他们对社区需要的想法,这种方法被称为()。
把下面六个图形分为具有各自共同特征或规律的两类,分类正确的一项是:
InwhatrespectistheUnitedStatesveryfortunate?
最新回复
(
0
)