首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一条自动生产线连续生产n件产品不出故障的概率为,n=0,1,2,….假设产品的优质品率为p(0<P<1).如果各件产品是否为优质品相互独立. (Ⅰ)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率; (Ⅱ)若已知在某两次故
一条自动生产线连续生产n件产品不出故障的概率为,n=0,1,2,….假设产品的优质品率为p(0<P<1).如果各件产品是否为优质品相互独立. (Ⅰ)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率; (Ⅱ)若已知在某两次故
admin
2016-10-20
49
问题
一条自动生产线连续生产n件产品不出故障的概率为
,n=0,1,2,….假设产品的优质品率为p(0<P<1).如果各件产品是否为优质品相互独立.
(Ⅰ)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率;
(Ⅱ)若已知在某两次故障间该生产线生产了k件优质品,求它共生产m件产品的概率.
选项
答案
(Ⅰ)应用全概率公式,有 [*] (Ⅱ)当m<k时,P(A
m
|B
k
)=0;当m≥k时, [*]
解析
记事件B
k
=“两次故障间共生产k件优质品”,B
k
显然与两次故障间生产的产品总数有关.记A
n
=“两次故障间共生产n件产品”,n=0,1,2,….A
0
,A
1
,A
2
,…构成一个完备事件组.在应用全概率公式时,条件概率P(B
k
|A
n
)的计算是一个n重伯努利概型问题.这是因为每件产品的质量均有优质品与非优质品之分,并且各件产品是否为优质品是相互独立的,又每件产品的优质品率都是p.因此当n<k时,P(B
k
|A
n
)=0,当n≥k时,P(B
k
|A
n
)=C
n
k
p
k
q
n-k
.
转载请注明原文地址:https://kaotiyun.com/show/EqT4777K
0
考研数学三
相关试题推荐
[*]
[*]
A、 B、 C、 D、 B
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
随机试题
A.宿主抗移植物反应B.急性排斥反应C.慢性排斥反应D.超急性排斥反应E.移植物抗宿主反应受者心脏移植1个月左右出现排斥现象,用免疫抑制剂治疗后缓解,此为
房地产的(),用来表示在一定时期内一种房地产供给量的相对变动对于该房地产自身价格的相对变动的反应程度,它是房地产供给量变化的百分比与其价格变化的百分比之比。
契税的征税范围包括()。
对于市场风险较大,特别是预期收益率很高的投资产品,商业银行应主动热情向客户推介或销售该产品。()
下列关于我国载人航空发展的标志性事件,说法错误的是()。
事件回顾近期,曾被问责官员异地复出的情况频频发生。有媒体报道,贵州省瓮安县原县委书记王勤,在震惊全国的瓮安“628群体事件”中被撤销书记职务,之后不久又悄然复出,调任贵州黔南州财政局副局长。问题思考对于一些官员被问责之后又异地复出的现象在
2019年5月29日召开的中央全面深化改革委员会第八次会议强调,推动能源生产和()是保障能源安全、促进人与自然和谐共生的治本之策。
下列不属于收入再分配手段的是()。
设总体的概率密度为f(χ;θ)=X1,…,Xn为来自总体X的简单随机样本,求θ的矩估计量与最太似然估计量。
Thethieves________thewastepaperallovertheroomwhiletheyweresearchingforthediamondring.
最新回复
(
0
)