首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1 ,α2 ,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T , α1+α2+α3=[4,一1,2,3]T , 2α2+α3=[5,一1,0,1]T , 秩(A)=2,那么方程组AX=b的通解是________.
已知α1 ,α2 ,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T , α1+α2+α3=[4,一1,2,3]T , 2α2+α3=[5,一1,0,1]T , 秩(A)=2,那么方程组AX=b的通解是________.
admin
2016-12-16
56
问题
已知α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的3个解,其中
2α
1
一α
2
=[0,2,2,2]
T
,
α
1
+α
2
+α
3
=[4,一1,2,3]
T
,
2α
2
+α
3
=[5,一1,0,1]
T
,
秩(A)=2,那么方程组AX=b的通解是________.
选项
答案
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
解析
利用方程组解的结构及其性质求之.
因为n一r(A)=4一2=2,所以方程组AX=b的通解形式为
a+k
1
η
1
+k
2
η
2
,
其中α为AX=b的特解,η
1
,η
2
为AX=0的基础解系.
因此,下面应求出AX=b的一个解及AX=0的两个线性无关的解.
根据解的性质知,
2α
1
一α
2
=α
1
+(α
1
一α
2
)一[0,2,2,2]r是AX=b的解,而
(α
1
+α
2
+α
3
)一(2α
2
+α
3
)=α
1
一α
2
=[一1,0,2,2]r
是AX=0的解.
3(2α
1
一α
2
)一(2α
2
+α
3
)=5(α
1
一α
2
)+(α
1
一α
3
)=[一5,7,6,5]r
是AX=0的解.显然[一1,0,2,2]r与[一5,7,6,5]r线性无关(对应分量不成比例).
因此,方程组AX=b的通解为
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
,其中k
1
,k
2
为任意常数.
转载请注明原文地址:https://kaotiyun.com/show/FBH4777K
0
考研数学三
相关试题推荐
求过点(2,1,1/2)的平面,使它与三个坐标面在第一象限内所围成的立体体积最小.
已知点A(2,1,4)、B(4,3,10),写出以线段AB为直径的球面方程.
求曲线y=sinx在具有下列横坐标的各点处切线的斜率:x=2/3π;x=π.
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
设f(x)在区间[-a,a](a>0)上有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使a3f"(η)=[*]
设n阶矩阵A的元素全为1,则A的n个特征值是________.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设X,Y是两个随机变量,且P{x≤1,Y≤1}=4/9,P{x≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
随机试题
清代对于州县一级审理民事案件、轻微刑事案件等自理案件规定了审理期限,为()。
在Word2003的“文件”下拉菜单的下部,通常会列出若干文件,这些文件是_______。
肛门狭窄的处理中,以下哪一项是错误的:
可以翻转肾上腺素升压作用的是
以下哪项检查有助于诊断若需进行触诊检查,则应该
DNA的一级结构是
外敷能刺激皮肤,引起发泡,故皮肤过敏者应慎用有毒,不可过量服用,咳痰不利者慎服
农民集体所有的土地由农村集体经济组织或者( )经营管理。
下列程序的运行结果是______。#defineP(a)printf("%d",a)main(){intj,a[]={1,2,3,4,5,6,7},i=5;
Whatdoestheword"cheer"(Line2,Para.1)imply?HumansonEarthtodayarecharacterizedby______.
最新回复
(
0
)