首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1 ,α2 ,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T , α1+α2+α3=[4,一1,2,3]T , 2α2+α3=[5,一1,0,1]T , 秩(A)=2,那么方程组AX=b的通解是________.
已知α1 ,α2 ,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T , α1+α2+α3=[4,一1,2,3]T , 2α2+α3=[5,一1,0,1]T , 秩(A)=2,那么方程组AX=b的通解是________.
admin
2016-12-16
83
问题
已知α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的3个解,其中
2α
1
一α
2
=[0,2,2,2]
T
,
α
1
+α
2
+α
3
=[4,一1,2,3]
T
,
2α
2
+α
3
=[5,一1,0,1]
T
,
秩(A)=2,那么方程组AX=b的通解是________.
选项
答案
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
解析
利用方程组解的结构及其性质求之.
因为n一r(A)=4一2=2,所以方程组AX=b的通解形式为
a+k
1
η
1
+k
2
η
2
,
其中α为AX=b的特解,η
1
,η
2
为AX=0的基础解系.
因此,下面应求出AX=b的一个解及AX=0的两个线性无关的解.
根据解的性质知,
2α
1
一α
2
=α
1
+(α
1
一α
2
)一[0,2,2,2]r是AX=b的解,而
(α
1
+α
2
+α
3
)一(2α
2
+α
3
)=α
1
一α
2
=[一1,0,2,2]r
是AX=0的解.
3(2α
1
一α
2
)一(2α
2
+α
3
)=5(α
1
一α
2
)+(α
1
一α
3
)=[一5,7,6,5]r
是AX=0的解.显然[一1,0,2,2]r与[一5,7,6,5]r线性无关(对应分量不成比例).
因此,方程组AX=b的通解为
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
,其中k
1
,k
2
为任意常数.
转载请注明原文地址:https://kaotiyun.com/show/FBH4777K
0
考研数学三
相关试题推荐
证明:曲面上任何点处的切平面在各坐标轴上的截距之和为常值.
求下列函数的全微分:
设L为xOy平面内直线x=a上的一段,证明:
求过点(2,0,-3)且与直线垂直的平面方程.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率.[附表]其中Ф(x)表示标准正态分布函数.
随机试题
在数控机床中,常采用滚动丝杠和静压螺母,用滚动摩擦代替滑动摩擦。( )
Access2010数据库由六种数据库对象组成,这些数据库对象包括:_______、查询、窗体、报表、宏和模块。
下列不是斜疝特点的是
患儿,男,6岁。发热2天,出现淡红色小丘疹,根盘红晕,丘疹上部可见疱疹,形态椭圆,疱浆清亮,皮疹以躯干为多,苔薄白,脉浮数。其治法是
进行工程项目定量风险分析时,项目模拟一般采用()
投资者在股票市场购买股票时,若报出的价格比较高而且时间比较早,买到股票的可能性更大。()
试述我国商业银行的信贷原则。
张伯伯购买一桶农药倒入甲、乙两个药桶中,但都未装满。若把甲桶农药倒入乙桶中,乙桶装满后,甲桶还余5升;若把乙桶农药全部倒入甲桶中,甲桶还能再装10升。已知甲桶容量是乙桶容量的1.5倍,那么张伯伯购买回来的农药有多少升?
WindowsNT是人们非常熟悉的网络操作系统,其吸引力主要来自Ⅰ.适合做因特网标准服务平台Ⅱ.开放源代码Ⅲ.有丰富的软件支持Ⅳ.免费提供
下列数据哪个不是字符型数据()。
最新回复
(
0
)