首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
admin
2014-04-10
58
问题
设A为n阶矩阵,对于齐次线性方程(I)A
n
=0和(Ⅱ)A
n+1
x=0,则必有
选项
A、(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解.
B、(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解.
C、(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解.
D、(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解.
答案
A
解析
若α是(I)的解,即A
n
α=0,显然A
n+1
α=A(A
n
α=AO=0,即α必是(Ⅱ)的解.可排除C和D.若η是(Ⅱ)的解,即A
n+1
η=0.假若η不是(I)的解,即A
n
η≠0,那么对于向量组η,Aη,A
n
η,…,A
n
η,一方面这是n+1个n维向量必线性相关;另一方面,若kη+k
1
Aη+k
2
A
2
η+…+k
n
A
n
η=0,用A
n
左乘上式,并把A
n+1
η=0,A
n+2
η=0,…,代入,得kA
n
η=0.由于A
n
η≠0,必有k=0.对k
1
Aη+k
2
A
2
η+…+k
n
A
n
η=0,用A
n-1
左乘上式可推知k
1
=0.类似可知k
i
=0(i=2,3,…,n).于是向量组η,Aη,A
2
η,…,A
n
η线性无关,两者矛盾.所以必有A
n
η=0,即(Ⅱ)的解必是(I)的解.由此可排除B.故应选A.
转载请注明原文地址:https://kaotiyun.com/show/FBU4777K
0
考研数学三
相关试题推荐
在60多年的执政实践中,党积累了执政的成功经验,主要是
关于唯物辩证法的“度”的概念的正确理解是()
形而上学唯物主义的特点有( )
中华民族实现伟大复兴,中国人民实现更加美好生活,要加快把人民军队建设成世界一流军队。为此需要
遵义会议的历史意义有()
垄断资本所获得的高额利润,归根到底来自无产阶级和其他劳动人民创造的剩余价值。具体说,垄断利润的来源包括()
社会主义核心价值观是在社会主义核心价值体系基础上提出来的。相比于社会主义核心价值体系,社会主义核心价值观更加突出核心要素、更加注重凝练表达、更加强化实践导向。但二者的方向是一致的,体现在
在19世纪初,火车在发明后的一段时间里受到了人们的质疑。那时候,马车比火车跑得都要快,人们往往讥笑火车的低速度。但是到了20世纪之后,火车早已战胜了马车,成为人们最主要的运载工具之一。火车战胜马车的哲学依据是()
材料1历史已经并将继续证明,只有社会主义才能救中国,只有坚持和发展中国特色社会主义才能实现中华民族伟大复兴。国内外形势正在发生深刻复杂变化,我国发展仍处于重要战略机遇期。我们具备过去难以想象的良好发展条件,但也面临着许多前所未有的困难和挑战。中国
2022年3月31日,由财政部、国务院发展研究中心与世界银行联合开展研究的《中国减贫四十年:驱动力量、借鉴意义和未来政策方向》在京发布。《报告》提出,中国解决绝对贫困问题主要依靠两大支柱,包括()。
随机试题
建筑安装工程费中的其他项目费包括()。
A.伤寒第一次菌血症B.伤寒第二次菌血症C.伤寒肠道并发症D.伤寒后再燃E.伤寒后复发伤寒初期
通过抑制血管紧张素I转换酶而发挥抗慢性心功能不全作用的代表药有
患儿男,2岁。肺炎治愈后返家,其母认真观察患儿的精神状态,鼓励其多喝水,协助咳嗽。此时母亲的角色是()。
某消化性溃疡病人,原有疼痛节律消失,变为持续上腹痛,伴频繁呕吐,呕吐物含发酵性宿食。最可能的并发症为
安全生产标准的安全生产范围包括()个体防护、粉尘防爆和涂装作业等。
《国境卫生检疫法实施细则》规定的鼠疫、霍乱、黄热病种检疫传染病潜伏期分别为( )
同层级的政府间事权及支出责任划分的原则有()。
Aneconomistissomeonewhoknowsalotabouthowgoodsandwealthareproducedandused.Food,for(31)______,isakindofgoo
A、Ithasthreatenedthenormallifeofotheranimals.B、It’sanexampleofvictimsofhabitatdestruction.C、It’sthemostspeci
最新回复
(
0
)