设f(χ)在[a,b]上连续可导,f(χ)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(χ)dχ=0,证明:(1)在(a,b)内至少存在一点ξ,使得f′(ξ)=f(ξ); (2)在(a,b)内至少存在一点η(η≠ξ),使得f〞(η)=f

admin2017-09-15  36

问题 设f(χ)在[a,b]上连续可导,f(χ)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(χ)dχ=0,证明:(1)在(a,b)内至少存在一点ξ,使得f′(ξ)=f(ξ);
    (2)在(a,b)内至少存在一点η(η≠ξ),使得f〞(η)=f(η).

选项

答案(1)令F(χ)=∫aχf(t)dt,F(a)=F(b)=0, 由罗尔定理,存在c∈(a,b),使得F′(c)=0,即f(c)=0. 令h(χ)=e-χf(χ),h(a)=h(c)=0, 由罗尔定理,存在ξ∈(a,c),使得h′(ξ)=0, 由h′(χ)=e-χ[f′(χ)-f(χ)]且e-χ≠0,故f′(ξ)=f(ξ). (2)同理,由h(c)=h(b)=0,则存在ζ∈(c,b),使得f′(ζ)=f(ζ). 令φ(χ)=eχ[f′(χ)-f(χ)],φ(ξ)=φ(ζ)=0, 由罗尔定理,存在η∈(ξ,ζ)[*](a,b),使得φ′(η)=0, 而φ′(χ)=eχ[f〞(χ)-f(χ)]且eχ≠0,故f〞(η)=f(η).

解析
转载请注明原文地址:https://kaotiyun.com/show/Fbk4777K
0

最新回复(0)