某大学一年级有350名学生选修音乐、舞蹈、美术三门课程,每名学生最多可选修两门课程,选修音乐课的学生有151名,选修舞蹈课的学生有89名,选修美术课的学生有201名。其中,同时选修音乐课和舞蹈课的学生有24名,同时选修音乐课和美术课的学生有38名,则同时选

admin2016-11-01  31

问题 某大学一年级有350名学生选修音乐、舞蹈、美术三门课程,每名学生最多可选修两门课程,选修音乐课的学生有151名,选修舞蹈课的学生有89名,选修美术课的学生有201名。其中,同时选修音乐课和舞蹈课的学生有24名,同时选修音乐课和美术课的学生有38名,则同时选修舞蹈课和美术课的学生有多少名?(    )

选项 A、19
B、29
C、34
D、45

答案B

解析 设同时选修舞蹈课和美术课的学生有x名,由容斥原理公式可知,350=151+89+201—24—38一x,解得x=29,故选B。
转载请注明原文地址:https://kaotiyun.com/show/G1aY777K
本试题收录于: 行测题库国家公务员分类
0

相关试题推荐
最新回复(0)