首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0. (1)求方程yˊ+ysinx=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0. (1)求方程yˊ+ysinx=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
admin
2016-09-13
63
问题
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.
(1)求方程yˊ+ysinx=φ(x)e
cosx
的通解;
(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
选项
答案
本题考查微分方程的求解与解的讨论,尤其是(2)关于解的讨论,是考生在考场上的难点,请复习备考的学生重视. (1)该方程为一阶线性微分方程,通解为 y=e
-∫sinxdx
[∫φ(x)e
cosx
e
sinxdx
dx+C] =e
cosx
[∫φ(x)e
cosx
.e
-cosx
dx+C] =e
cosx
[∫φ(x)dx+C]=e
cosx
[Ф(x)+C](其中C为任意常数). (2)因为Фˊ(x)=φ(x),所以Ф(x)=∫
0
x
φ(t)dt+C
1
.又Ф(0)=0,于是,Ф(x)=∫
0
x
φ(t)dt.而Ф(x+2π)=∫
0
x+2π
φ(t)dt=∫
0
x
φ(t)dt+∫
x
x+2π
φ(t)dt=Ф(x)+∫
0
2π
φ(t)dt,所以,当∫
0
2π
φ(t)dt=0时,Ф(x+2π)=Ф(x),即Ф(x)以2π为周期. 因此,当∫
0
2π
φ(t)dt=0时,方程有以2π为周期的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/G3T4777K
0
考研数学三
相关试题推荐
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
A,B是两个事件,则下列关系正确的是().
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至多有一件是废品”.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设f(x)=2x+3x一2,则当x→0时().
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
设随机变量X1,X2,…,Xn,…相互独立,,则当n→∞时Yn以正态分布为极限分布,只要X1,…,Xn,…
设随机变量X和Y的联合分布是正方形G={(x,y):1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X—Y|的概率密度p(u)。
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于的概率p.
随机试题
结构中含有碱性芳杂环为哌啶甲苯环,同时结构中有含0的四原子链,且含有酰胺结构的药物为
附壁血栓(muralthrombus)通常发生在
具有收敛止血、消肿生肌作用的中药是
患儿,3岁。咳嗽反复发作已1月余,常在夜间发作,痰少,活动后有加重,听诊双肺可闻及散在哮鸣音,血常规示白细胞正常。其可能诊断为
项目质量是在质量计划实施过程中通过质量检验得到的。()
假设苗先生与苗太太是你的新客户,目前正面临生涯与家庭上的转变,需要金融理财师协助规划。经过初步沟通面谈后,你获得了以下家庭、职业与财务信息:一、案例成员二、收支情况1.家庭年收入66.12万元,其中苗先生纯收入63万元,苗太太收入0.72万元,房租
•Youwillhearfiveanotherrecording.Eachspeakerisexpressingoneopinion.•Foreachrecording,decidewhatthemainideaea
Englandisnotabigcountry:fromnorthtosouthandfromeasttowestitisonlyaboutthreehundredmilesacross.Butforas
PASSAGEFOURWhichpartofthebrainevaluateswhethersomeoneisrightforyou?
StatesExperimentwithOut-of-ClassroomLearning[A]AttheendofAugust,mostofOhio’steenagerswillshakeofftheirsummerti
最新回复
(
0
)