首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0. (1)求方程yˊ+ysinx=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0. (1)求方程yˊ+ysinx=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
admin
2016-09-13
82
问题
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.
(1)求方程yˊ+ysinx=φ(x)e
cosx
的通解;
(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
选项
答案
本题考查微分方程的求解与解的讨论,尤其是(2)关于解的讨论,是考生在考场上的难点,请复习备考的学生重视. (1)该方程为一阶线性微分方程,通解为 y=e
-∫sinxdx
[∫φ(x)e
cosx
e
sinxdx
dx+C] =e
cosx
[∫φ(x)e
cosx
.e
-cosx
dx+C] =e
cosx
[∫φ(x)dx+C]=e
cosx
[Ф(x)+C](其中C为任意常数). (2)因为Фˊ(x)=φ(x),所以Ф(x)=∫
0
x
φ(t)dt+C
1
.又Ф(0)=0,于是,Ф(x)=∫
0
x
φ(t)dt.而Ф(x+2π)=∫
0
x+2π
φ(t)dt=∫
0
x
φ(t)dt+∫
x
x+2π
φ(t)dt=Ф(x)+∫
0
2π
φ(t)dt,所以,当∫
0
2π
φ(t)dt=0时,Ф(x+2π)=Ф(x),即Ф(x)以2π为周期. 因此,当∫
0
2π
φ(t)dt=0时,方程有以2π为周期的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/G3T4777K
0
考研数学三
相关试题推荐
[*]
A、 B、 C、 D、 D
1/e
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设星形线x=acos3t,y=asin3t上每一点处的线密度的大小等于该点到原点距离的立方,求星形线在第一象限的弧段对位于原点处的单位质点的引力.
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
求:微分方程y〞+y=-2x的通解.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设,其中D为正方形域{(x,y)|0≤x≤1,0≤y≤1}.
随机试题
酶介质交叉配血试验中酶的作用,不包括
传染性肝炎病犬在康复期可能出现的眼部病变有
以下所列美国FDA的妊娠期药物安全性索引“妊娠毒性X级药物”中,最正确的是
按照税法解释权限划分,与被解释的税法具有同等法律效力的税法解释有()。
【2015四川】按照认知心理学的观点,划分机械学习与有意义学习的主要依据是()。
任何问题都含有三个基本的成分:一是_______;二是要达到的目标;三是存在的限制或障碍。
福州大洋百货为了庆祝春节,特举行让利百万大酬宾促销活动,在二楼打出了买300送60元的优惠活动。其中某柜台各以3000元卖出两件商品,其中盈亏均为20%,则该柜台应()。
据《韩国先驱报》报道,韩国教育部7月1日公布了名为“智能教育”的项目计划,该计划着力于在2015年之前.将中小学所使用的全部教科书数字化。使教材内容可以呈现在计算机、互动黑板、平板电脑和智能电视机上。未来数年之内.传统的纸媒教材将有可能在韩国消失。对此,有
某商店出售甲、乙两种货物,已知甲货物的数量比乙货物多40%,每件的售价比乙货物多25%,卖完所有东西以后,店主发现实际平均每件货物的售价为330元。问实际上每件甲货物的售价为多少元?
下列程序功能是,产生10个0-100的随机数,输出其中的最大值。请将程序补充完整。PrivateSubForm_Click()Diman(10)AsIntegerDimmaxAsIntegerRando
最新回复
(
0
)