首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0. (1)求方程yˊ+ysinx=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0. (1)求方程yˊ+ysinx=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
admin
2016-09-13
61
问题
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.
(1)求方程yˊ+ysinx=φ(x)e
cosx
的通解;
(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
选项
答案
本题考查微分方程的求解与解的讨论,尤其是(2)关于解的讨论,是考生在考场上的难点,请复习备考的学生重视. (1)该方程为一阶线性微分方程,通解为 y=e
-∫sinxdx
[∫φ(x)e
cosx
e
sinxdx
dx+C] =e
cosx
[∫φ(x)e
cosx
.e
-cosx
dx+C] =e
cosx
[∫φ(x)dx+C]=e
cosx
[Ф(x)+C](其中C为任意常数). (2)因为Фˊ(x)=φ(x),所以Ф(x)=∫
0
x
φ(t)dt+C
1
.又Ф(0)=0,于是,Ф(x)=∫
0
x
φ(t)dt.而Ф(x+2π)=∫
0
x+2π
φ(t)dt=∫
0
x
φ(t)dt+∫
x
x+2π
φ(t)dt=Ф(x)+∫
0
2π
φ(t)dt,所以,当∫
0
2π
φ(t)dt=0时,Ф(x+2π)=Ф(x),即Ф(x)以2π为周期. 因此,当∫
0
2π
φ(t)dt=0时,方程有以2π为周期的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/G3T4777K
0
考研数学三
相关试题推荐
[*]
[*]
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
设,试用定义证明f(x,y)在点(0,0)处可微分.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).证明;
由题设,需补充f(x)在x=1处的定义.[*]
微分方程dy/dx=y/x-1/2(y/x)3满足y丨x=1=1的特解为y=_________.
差分方程满足条件y0=5的特解是_______________.
随机试题
霍奇金淋巴瘤中,预后最差的病理组织学类型是
男,16岁,骑跨伤后4天,排尿困难,尿道口流血。查体:体温38.4℃,阴囊明显肿大,发绀。其处理方法是
专项方案实施前,可以进行安全技术交底的交底人有()。
商业物业市场的繁荣除与当地整体社会经济状况相关外,还与()等行业的发展密切相关。
“虽训练犹未充足,装备犹未齐备,外人以为不能支持一周的阵地,竟能抵抗十周。不只军队甘于牺牲,视死如归,一般老幼男女,无不争为军队服务。但是苦战之后,实力丧失十之六七,无法遏止日军前进,预设的长江至苏州、嘉兴及江阴至无锡国防线不守。”材料反映的战役(
如果将豆腐冰冻一段时间后再解冻,豆腐内部会出现非常多小孔。这一变化的原因是()。
数学方法是西方科学中极其重要和不可或缺的方法,严谨和精确是科学精神的重要组成部分,而严谨和精确在很大程度上是由数学方法带来的。科学要求各种概念尽可能被定量且能以一定的精确性加以检验。定律和定理的精确性体现在它的数学表达上。实验测定值与定律和定理的数学推定值
规定外国公使可以进驻北京的条约是()。
串的长度是______。
Watchingmoviestarslightuponscreenmayincreasetheoddsachildoryoungteenwilltrysmoking,studyfindingssuggest.
最新回复
(
0
)