首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0. (1)求方程yˊ+ysinx=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0. (1)求方程yˊ+ysinx=φ(x)ecosx的通解; (2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
admin
2016-09-13
74
问题
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.
(1)求方程yˊ+ysinx=φ(x)e
cosx
的通解;
(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
选项
答案
本题考查微分方程的求解与解的讨论,尤其是(2)关于解的讨论,是考生在考场上的难点,请复习备考的学生重视. (1)该方程为一阶线性微分方程,通解为 y=e
-∫sinxdx
[∫φ(x)e
cosx
e
sinxdx
dx+C] =e
cosx
[∫φ(x)e
cosx
.e
-cosx
dx+C] =e
cosx
[∫φ(x)dx+C]=e
cosx
[Ф(x)+C](其中C为任意常数). (2)因为Фˊ(x)=φ(x),所以Ф(x)=∫
0
x
φ(t)dt+C
1
.又Ф(0)=0,于是,Ф(x)=∫
0
x
φ(t)dt.而Ф(x+2π)=∫
0
x+2π
φ(t)dt=∫
0
x
φ(t)dt+∫
x
x+2π
φ(t)dt=Ф(x)+∫
0
2π
φ(t)dt,所以,当∫
0
2π
φ(t)dt=0时,Ф(x+2π)=Ф(x),即Ф(x)以2π为周期. 因此,当∫
0
2π
φ(t)dt=0时,方程有以2π为周期的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/G3T4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
[*]
[*]
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
计算下列定积分:
若函数y=f(x)有fˊ(x0)=1/2,则当△x→0时,该函数在x=x0点外的微分dy是().
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
随机试题
厄他培南的临床应用注意事项有
妊娠剧吐初为一般反应,至孕几周左右可出现妊娠剧吐
根据科目汇总表登记总账,在简化登记总账工作的同时也起到了()的作用。
加工贸易保税货物的一般保税最长期限为()。
理财规划师不按照合同约定提供承诺的服务,则客户可要求理财规划师所在机构( )。
甲出资60%,乙、丙各出资20%成立合伙组织,起字号为怡和商行,并推举甲为商行负责人。在与商行的债务人丁的一场诉讼中,甲未与乙、丙商量而放弃怡和商行对丁的债权10万元,乙、丙知道后表示反对。甲放弃债权的行为的效力如何?()
“五保”供养的对象是农村中()老年人、残疾人和未满16周岁的村民。
《阿拉木图宣言》
Whyhasn’tthewomanboughtapresentforJim?
The______talksbetweenChinaandtheUnitedStateswerethebaseofthelateragreement.
最新回复
(
0
)