首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤ex一1; (Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别交于点P2和P1; (Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P1P2之
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤ex一1; (Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别交于点P2和P1; (Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P1P2之
admin
2017-10-23
67
问题
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤e
x
一1;
(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=e
x
一1分别交于点P
2
和P
1
;
(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P
1
P
2
之长.求函数f(x)的表达式.
选项
答案
如图6.1,设动直线MN上各点的横坐标为x,由题设知 S=∫
0
x
f(t)dt, |P
1
P
2
|=e
x
一1一f(x). 于是,函数f(x)满足方程∫
0
x
f(t)dt=e
x
一1一f(x). [*] 由f(x)及e
x
连续知变上限定积分∫
0
x
f(t)dt可导,从而f(x)可导.将上述方程两端对x求导并令x=0,得 f(x)=e
x
—f’(x),f(0)=0(与题设一致) 又因f(0)=0,于是f(x)是一阶线性方程y’+y=e
x
满足初始条件y(0)=0的特解.解之即得 f(x)=[*](e
x
一e
—x
).
解析
转载请注明原文地址:https://kaotiyun.com/show/GEX4777K
0
考研数学三
相关试题推荐
=__________
设f(x)在[a,b]上连续,证明:∫abf(x)dx=∫abf(a+b—x)dx.
设A为三阶实对称矩阵,且为A的不同特征值对应的特征向量,则a=__________.
设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P{max(X,Y)≠0)及P{min(X,Y)≠0}.
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设A=(α1,α2,…,αm),若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
求极限
求极限
设A,B,C是任意三个事件,事件D表示A,B,C中至少有两个事件发生,则下列事件中与D不相等的是()
设二维随机变量(X,Y)的概率密度为求:(I)(X,Y)的边缘概率密度fX(x),fY(y);(Ⅱ)Z=2X一Y的概率密度fZ(z).
随机试题
患者张某,男性,28岁。农民,患者发热恶寒,咳嗽,咳白黏痰,痰量由少渐多,胸痛剧烈,呼吸不利,苔薄黄,脉浮滑数。其治法是
营养大腿诸肌的主要血管是
构成招标采购服务项目费用的最主要部分是()。
根据《全国年节及纪念日放假办法》,()不是全体公民放假的节日。
下列各项中,不能记入“销售费用”的是()。
甲公司为生产加工企业,其在20×6年度发生了以下与股权投资相关的交易: (1)甲公司在若干年前参与设立了乙公司并持有其30%的股权,将乙公司作为联营企业,采用权益法核算。20×6年1月1日,甲公司自A公司(非关联方)购买了乙公司60%的股权并取得了控制
四棱锥P—ABClD底面为正方形,侧面PAD为等边三角形,且侧面PAD上底面ABCD,点M在底面正方形ABCD内运动,且满足MP=MC,则点M在正方形ABCD内的轨迹一定是().
实现中华民族伟大复兴的中国梦,反映了近代以来一代又一代中国人的美好夙愿,进一步揭示了中华民族的历史命运和当代中国的发展走向,指明了全党全国各族人民共同的奋斗目标。习近平总书记指出:“实现中国梦必须走中国道路、弘扬中国精神、凝聚中国力量。”这些从根本上讲就是
人民检察院依法对公安机关的侦查活动是否合法实行监督,主要内容是发现和纠正下列违法行为()。
给定资料1.2016年4月19日,中共中央总书记、国家主席、中央军委主席、中央网络安全和信息化领导小组组长习近平主持召开网络安全和信息化工作座谈会,深刻回答了事关中国网信事业长远发展的一系列重大问题,科学描绘了中国建设网络强国的宏伟蓝图和实践路径
最新回复
(
0
)