首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤ex一1; (Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别交于点P2和P1; (Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P1P2之
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤ex一1; (Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别交于点P2和P1; (Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P1P2之
admin
2017-10-23
97
问题
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤e
x
一1;
(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=e
x
一1分别交于点P
2
和P
1
;
(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P
1
P
2
之长.求函数f(x)的表达式.
选项
答案
如图6.1,设动直线MN上各点的横坐标为x,由题设知 S=∫
0
x
f(t)dt, |P
1
P
2
|=e
x
一1一f(x). 于是,函数f(x)满足方程∫
0
x
f(t)dt=e
x
一1一f(x). [*] 由f(x)及e
x
连续知变上限定积分∫
0
x
f(t)dt可导,从而f(x)可导.将上述方程两端对x求导并令x=0,得 f(x)=e
x
—f’(x),f(0)=0(与题设一致) 又因f(0)=0,于是f(x)是一阶线性方程y’+y=e
x
满足初始条件y(0)=0的特解.解之即得 f(x)=[*](e
x
一e
—x
).
解析
转载请注明原文地址:https://kaotiyun.com/show/GEX4777K
0
考研数学三
相关试题推荐
求二元函数z=f(x,y)=x2y(4一x—y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设随机变量X,Y相互独立,且X~,y~E(4),令U=X+2y,求U的概率密度.
设一电路由三个电子元件串联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
设f(x)在[0,a](a>0)上非负、二阶可导,且f(0)=0,f"(x)>0,()为y=f(x),y=0,x=a围成区域的形心,证明:.
设总体X的密度函数为f(x)=,θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
设X1,…,X9为来自正态总体X~N(μ,σ2)的简单随机样本,令证明:Z~t(2).
求极限
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
从6双不同的手套中任取4只,求(1)恰有一双配对的概率;(2)至少有2只可配成一双的概率。
随机试题
在建筑物的进线处将PE干线、设备PE干线、进水管、采暖和空调竖管、建筑物构筑物金属构件和其他金属管道、装置外露可导电部分等相联结,此措施称为()。
色氨酸转运异常导致的皮肤综合征是
造血干细胞的免疫标记是
传染性单核细胞增多症
中央银行的性质包括()。
甲公司与乙运输公司签订了多式联运合同,应甲要求,乙开具了可转让多式联运单据。甲隐瞒了所运物品为危险物等相关信息,也未履行妥善包装的义务,且不久就将这份合同转让给了丙公司。运输期间该物品发生自燃,导致运输工具损毁。对此,下列说法中正确的是()。
知识是个体通过与环境相互作用后获得的()。
设随机变量X的分布律为P{X=k}=,k=1,2,…,λ>0,则常数c=()。
数据是信息的符号表示或称载体;信息则是数据的内涵,是数据的
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcagesandmovingintohomesandworkplaces,roboticists
最新回复
(
0
)