首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2013-10-11
45
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(Ⅰ)存在η∈(1/2,1),使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f
’
(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
(Ⅰ)由题设,引入辅助函数φ(x)=x-f(x),则φ(x)在[0,1]上连续,由已知条件f(1)=0及f(1/2)=1,知φ(1)=1-f(1)=1>0且[*] ,所以由闭区间上连续函数的介值定理知存在一点η∈(1/2,1),使得φ(n)=0, 即η-f(η)=0,因此存在η∈(1/2,1),使f(η)=η,证毕. (Ⅱ)引入辅助函数,由原函数法将所需证明的等式中的ξ改写为x, 有f
’
(x)-λ[f(x)-x]=1,即f
’
(x)-λf(x)=1-λx. 由一阶线性非齐次微分方程的通解公式得: 所以[f(x)-x]e
-λx
=C,至此可令辅助函数为g(x)=[f(x)-x]e
-λx
=-φ(x)e
-λx
, 由已知条件及(I)中结论,知g(x)也是连续函数, 且g(0)=[f(0)-0]e
0
=0,g(η)=-φ(η)e
-λη
=0. 由罗尔定理知存在一点ξ(0,η),使得g
’
(ξ)=0, 又g
’
(x)=-λe
-λx
[f(x)-x]+e
-λx
[f
’
(x)-1], 所以-λ[f(ξ)-ξ]+f
’
(ξ)-1=0 此即f
’
(ξ)-λ[f(ξ)-ξ]=1.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/GOF4777K
0
考研数学三
相关试题推荐
结合材料回答问题:材料1党的十九届五中全会提出了“十四五”时期经济社会发展指导思想。要高举中国特色社会主义伟大旗帜,深入贯彻党的十九大和十九届二中、三中、四中、五中全会精神,坚持以马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要
2020年是八国联军侵华120周年。1900年八国联军侵华,1901年9月7日《辛丑条约》在北京签订,标志着清政府已完全成为帝国主义统治中国的工具,中国已完全沦为半殖民地半封建社会。《辛丑条约》以后,帝国主义列强对中国的侵略日益扩大,加强了对清政府的政治控
中国特色社会主义法律体系,是中国特色社会主义制度和中国特色社会主义法治体系的重要组成部分,其特征()
毛泽东指出,中国共产党在中国革命中战胜敌人主要的法宝是()
当代公共生活的特征主要表现为()
垄断价格等于成本价格加上
做好西藏工作,必须坚持中国共产党领导、中国特色社会主义制度、民族区域自治制度,必须坚持治国必治边、治边先稳藏的战略思想。做好西藏工作必须坚持的着眼点是
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
已知f(x)在x=0的某个邻域内连续,且f(0)=0,,则在点x=0处f(x)().
求∫x2arctancdx.
随机试题
呼吸衰竭最主要的临床表现是
引起发热的病因基多,临床上最为常见的疾病是()。
呼吸性酸中毒最先应解决的问题
4人进行百米赛跑,若二人成绩相同则排名一致,求有多少种不同的成绩排名?
斯大林时期的经济体制最本质的特点是()。
战略数据规划方法将产品、服务及资源的生命周期划分为四个有序的阶段,其/顷序应该是()。
•Lookatthechartsbelow.Theyshowcompanysales.•Whichchartdoeseachsentence(11-15)describe?•Foreachsentence,mar
Mostpeoplehaveseenbulliesinaction,makinglifemiserableforothers.Theirtargetsoftenescapetheintimidationrelativel
DoYouTakeExpiredMedications?Lotsofpeopledo.Here’swhatyouneedtoknow.Lastweek,DebiLoariewasstraighten
AremarkablethinghappenedinNewYorkrecently:thestatelegislature,ineffect,turneddownthechancetowin$700millioni
最新回复
(
0
)