首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
admin
2017-06-08
25
问题
已知n阶矩阵A满足A
3
=E.
(1)证明A
2
-2A-3E可逆.
(2)证明A
2
+A+2E可逆.
选项
答案
通过特征值来证明,矩阵可逆的充要条件是0不是它的特征值. 由于A
3
=B,A的特征值都满足λ
3
=1. (1)A
2
-2A-3E=(A-E)(A+E),3和-1都不满足λ
3
=1,因此都不是A的特征值.于是(A-3E)和(A+E)都可逆,从而A
2
-2A-3E可逆. (2)方法一 设A的全体特征值为λ
1
,λ
2
,…,λ
n
,则A
2
+A+2E的特征值λ
i
2
+λ
i
+2,i=1,2,…,n. 由于λ
i
3
=1,λ
i
或者为1,或者满足λ
i
2
+λ
i
+1=0.于是λ
i
2
+λ
i
+2或者为4,或者为1,总之都不是0.因此A
2
+A+2E可逆. 方法二 A(A
2
+A+2E)=A
3
+A
2
+2A=E+A
2
+2A=(A+E)
2
. 由于A
3
=E,每个特征值λ都满足λ
3
=1,于是-1不是A的特征值,即A+E可逆,从而A
2
+A+2E可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/Gct4777K
0
考研数学二
相关试题推荐
A、40πB、80πC、20πD、60πB
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
随机试题
24岁初孕妇,现妊娠32周,因腹部直接受撞击出现轻微腹痛,伴少量阴道流血,胎心146次/分。本例恰当的处理应是
4月20日,阳光外贸公司与温暖棉纺厂订立一份棉布买卖合同。合同中约定阳光外贸公司将定金15万元于合同订立后打人温暖棉纺厂的账户,温暖棉纺厂在一个月内组织货源。合同中约定由温暖棉纺厂代为办理托运手续。5月10日,温暖棉纺厂按照约定,将约定的棉布在其厂所在地办
Inatelephonesurveyofmorethan2,000adults,21%saidtheybelievedthesunrevolved(旋转)aroundtheearth.An【C1】______7%
[2012年1月]在两队进行的羽毛球对抗赛中,每队派出3男2女共5名运动员进行5局单打比赛,如果女子比赛安排在第二和第四局进行,则每队队员的不同出场顺序有()。
[*]
Generallyspeaking,aBritishiswidelyregardedasaquiet,shyandconservativepersonwhois【C1】______onlyamongthosewithw
To______istospeakwithdifficulty,hesitating,andrepeatingwords:"Ican’t-can’t-don’tknowhowtothankyou."
"Home,sweethome"isaphrasethatexpressesanessentialattitudeintheUnitedStates.Whethertherealityoflifeinthefam
A、$20to$50.B、$200to$500.C、$2000to$5000.D、$10to$100.BHowmuchmoneywillbepaidifyouapplyfor10schools?
A、Themanwasbadlyhurt.B、Hehadaterribleaccidentandhadhisleftlegbroken.C、Tworacingcarscollided.D、Tworacingdri
最新回复
(
0
)