首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
admin
2017-06-08
41
问题
已知n阶矩阵A满足A
3
=E.
(1)证明A
2
-2A-3E可逆.
(2)证明A
2
+A+2E可逆.
选项
答案
通过特征值来证明,矩阵可逆的充要条件是0不是它的特征值. 由于A
3
=B,A的特征值都满足λ
3
=1. (1)A
2
-2A-3E=(A-E)(A+E),3和-1都不满足λ
3
=1,因此都不是A的特征值.于是(A-3E)和(A+E)都可逆,从而A
2
-2A-3E可逆. (2)方法一 设A的全体特征值为λ
1
,λ
2
,…,λ
n
,则A
2
+A+2E的特征值λ
i
2
+λ
i
+2,i=1,2,…,n. 由于λ
i
3
=1,λ
i
或者为1,或者满足λ
i
2
+λ
i
+1=0.于是λ
i
2
+λ
i
+2或者为4,或者为1,总之都不是0.因此A
2
+A+2E可逆. 方法二 A(A
2
+A+2E)=A
3
+A
2
+2A=E+A
2
+2A=(A+E)
2
. 由于A
3
=E,每个特征值λ都满足λ
3
=1,于是-1不是A的特征值,即A+E可逆,从而A
2
+A+2E可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/Gct4777K
0
考研数学二
相关试题推荐
[*]
[*]
[*]
(e-1)/2
设A为n阶可逆矩阵,则下列结论正确的是().
设矩阵A与B相似,且求a,b的值;
随机试题
可治疗老年便秘、产后便秘的通便类药物是
王某与李某为一幢楼房的权属发生纠纷,起诉至人民法院。张某向人民法院主张该幢楼房归他所有,人民法院遂追加张某为第三人。其后原告王某申请撤诉,根据上述情况下列说法正确的是:
符合条件()时,用电单位宜设置自备电源。
若投资15万元建造一个任何时候均无残值的临时仓库,估计年收益为25000元,假定基准收益率为12%,仓库的寿命期为8年,则该项目()。
通过摆事实、讲道理进行教育的德育方法是___________。
当社会总需求小于社会总供给时,一般不宜采取()。
根据以下资料,回答以下题。2014年,某市十大产业链企业累计完成产值3528.8亿元,同比增长13.4%;实现主营业务收入3478.8亿元、利税348.9亿元、利润222.9亿元,同比分别增长13.0%、19.4%和19.5%。其中,十大产业链规
某眼镜店推出一款墨镜,该墨镜的利润为进价的25%,在“世界护眼日”当月,又推出了一款近视镜,该近视镜的利润为进价的15%,墨镜比近视镜的卖价贵142元,近视镜的进价是墨镜进价的84%,那么墨镜进价为多少元?
“江山多娇—2011.中国百家金陵画展(中国画)”,于11月16日上午在江苏省美术馆举行。(语料来源:《美术报》,2011年11月21日)
Theindustrialsocietieshavebeenextremelyproductiveduringthelasttwocenturies.Theeconomicadvancehasbeen【C1】______
最新回复
(
0
)