首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
admin
2017-06-08
49
问题
已知n阶矩阵A满足A
3
=E.
(1)证明A
2
-2A-3E可逆.
(2)证明A
2
+A+2E可逆.
选项
答案
通过特征值来证明,矩阵可逆的充要条件是0不是它的特征值. 由于A
3
=B,A的特征值都满足λ
3
=1. (1)A
2
-2A-3E=(A-E)(A+E),3和-1都不满足λ
3
=1,因此都不是A的特征值.于是(A-3E)和(A+E)都可逆,从而A
2
-2A-3E可逆. (2)方法一 设A的全体特征值为λ
1
,λ
2
,…,λ
n
,则A
2
+A+2E的特征值λ
i
2
+λ
i
+2,i=1,2,…,n. 由于λ
i
3
=1,λ
i
或者为1,或者满足λ
i
2
+λ
i
+1=0.于是λ
i
2
+λ
i
+2或者为4,或者为1,总之都不是0.因此A
2
+A+2E可逆. 方法二 A(A
2
+A+2E)=A
3
+A
2
+2A=E+A
2
+2A=(A+E)
2
. 由于A
3
=E,每个特征值λ都满足λ
3
=1,于是-1不是A的特征值,即A+E可逆,从而A
2
+A+2E可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/Gct4777K
0
考研数学二
相关试题推荐
[*]
e/2-1
A、∫0πdθ∫02acosθf(rcosθ,rsinθ)rdrB、∫0πdθ∫02asinθf(rcosθ,rsinθ)rdrC、∫-π/2π/2dθ∫02acosθf(rcosθ,rsinθ)rdrD、∫-π/2π/2dθ∫02asinθf(rc
不等式的解集(用区间表示)为[].
当x→0时,下列变量中哪些是无穷小量?哪些是无穷大量?哪些既不是无穷小量也不是无穷大量?
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
随机试题
对氯米芬的描述以下哪项正确
申某家住甲地,在乙地制作盗版光盘经过丙地运输到丁地进行销售。对申某的违法行为要进行处罚,谁有管辖权?()
关于类风湿关节炎关节症状的描述,下列哪项不恰当( )。
头空痛,眉棱骨痛,出血后痛重,属头痛血虚型,其治法为
长期使用糖皮质激素治疗,停药时应注意
在下列风险中,属于按风险产生原因划分的风险是()。
甲不慎掉入闹市街口的一个正在施工的井里受伤。一年零五个月后到法院起诉,要求施工者赔偿其损失。对此案,( )。
【2016上海BNO.21-25】为什么欧美人和亚洲人拥有不同的思维方式?为什么前者倾向于个人主义,并且惯于以分析的方式推理,而后者绝大多数呈现出一种集体主义,并且习惯从整体角度思维?这是个宏大的问题,人们曾从宗教信仰、生活方式,甚至基因中寻
美国总统奥巴马在上海演讲,在谈到中美关系时引用了中国古话“温故而知新”。今明两天,奥巴马将在北京参观故宫,登上长城,希望充分领略这个东方古国悠久的历史文化。而就在他访华前夕,美国国会众议院于上月底以压倒性多数通过一项决议案,纪念孔子诞辰2560周年,高度赞
"MigrationfromAsia"TheAsianmigrationhypothesisistodaysupportedbymostofthescientificevidence.Thefirst"hard"
最新回复
(
0
)