首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置. 证明: A2=A的充要条件是ξTξ=1;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置. 证明: A2=A的充要条件是ξTξ=1;
admin
2012-05-18
114
问题
设A=E-ξξ
T
,其中层为n阶单位矩阵,ξ是n维非零列向量,ξ
T
是ξ的转置.
证明:
A
2
=A的充要条件是ξ
T
ξ=1;
选项
答案
A
2
=(E-ξξ
T
)(E-ξξ
T
)=E-2ξξ
T
+ξξ
T
ξξ
T
=E-ξξ
T
+ξ(ξ
T
ξ)ξ
T
-ξξ
T
=A+(ξ
T
ξ)ξξ
T
-ξξ
T
, 那么A
2
=A≡(ξ
T
ξ-1)ξξ
T
=0. 因为ξ是非零列向量,ξξ
T
≠0,故A
2
=A≡ξ
T
ξ-1=0即ξ
T
ξ=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/maC4777K
0
考研数学二
相关试题推荐
假设某种商品的需求量Q是单价p(单位:元)的函数:Q=12000-80p,商品的总成本C是需求量Q的函数:C=25000+50Q,每单位商品需要纳税2元。试求使销售利润最大时的商品单价和最大利润额。
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T为二次型的矩阵A的特征向量.(Ⅰ)求常数a,b;(Ⅱ)求正交变换X=QY,使二次型XTAX化为标准形.
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3.(I)证明:α,Aα,A2α线性无关;(II)设P=(α,Aα,A2α),求P-1AP.
若方程组An×n=b有唯一解,A是该方程组的增广矩阵,则下列结论中成立的是().
设A为三阶矩阵,则().
已知3阶方阵A=(aij)3×3的第1行元素为:A11=1,a12=2,a13=一1.其中A*为A的伴随矩阵.求矩阵A.
设A为n阶矩阵,将A的第i,j行互换后再将第i,j列互换得到矩阵B,则“A与B等价”,“A与B相似”,“A与B合同”中成立的关系共有()个.
设A=,E为3阶单位矩阵.(1)求方程组Ax=0的一个基础解系.(2)求满足AB=E的所有矩阵B.
设n阶方阵A=(aij)的全部特征根为λ1,λ2,…,λn,证明:
随机试题
下面关于数据库三级模式结构的叙述中,正确的是()。
急性白血病并发感染最多见于
医学道德的意识现象和活动现象之间的关系是
A.膜剂B.气雾剂C.软膏剂D.栓剂E.缓释片经肺部吸收
男,16岁,左大腿下端肿胀,疼痛伴消瘦、乏力2个月。查体:左膝上肿胀,皮肤静脉怒张。X线片见左股骨下端骨质破坏,可见Cod—man三角。最佳治疗方案应选择()
中药炮制的目的有()
以下说法正确的是()。
在管理方格理论中,最贫乏的领导模式为()。
美育(中国艺术研究院2019年研;西南大学2019年研;陕科大2019年研;赣南师大2019年研;东华大学2018年研;聊城大学2018年研;江西师大2018年研;山科大2017年研;青岛大学2017年研;河北大学2016年研;杭州师大2016年研;北城2
Asmanypeoplehitmiddleage,theyoftenstarttonoticethattheirmemoryandmentalclarityarenotwhattheyusedtobe.We
最新回复
(
0
)