首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置. 证明: A2=A的充要条件是ξTξ=1;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置. 证明: A2=A的充要条件是ξTξ=1;
admin
2012-05-18
96
问题
设A=E-ξξ
T
,其中层为n阶单位矩阵,ξ是n维非零列向量,ξ
T
是ξ的转置.
证明:
A
2
=A的充要条件是ξ
T
ξ=1;
选项
答案
A
2
=(E-ξξ
T
)(E-ξξ
T
)=E-2ξξ
T
+ξξ
T
ξξ
T
=E-ξξ
T
+ξ(ξ
T
ξ)ξ
T
-ξξ
T
=A+(ξ
T
ξ)ξξ
T
-ξξ
T
, 那么A
2
=A≡(ξ
T
ξ-1)ξξ
T
=0. 因为ξ是非零列向量,ξξ
T
≠0,故A
2
=A≡ξ
T
ξ-1=0即ξ
T
ξ=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/maC4777K
0
考研数学二
相关试题推荐
假设某种商品的需求量Q是单价p(单位:元)的函数:Q=12000-80p,商品的总成本C是需求量Q的函数:C=25000+50Q,每单位商品需要纳税2元。试求使销售利润最大时的商品单价和最大利润额。
设,B是三阶非零矩阵,且AB=0,则()
假设f(x)在[a,+∞)上连续,f〞(x)在(a,+∞)内存在且大于零,记F(x)=证明:F(x)在(a,+∞)内单调增加.
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3.(I)证明:α,Aα,A2α线性无关;(II)设P=(α,Aα,A2α),求P-1AP.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它在进人大气层开始燃烧的前3s内,减少了体积的,问
设矩阵A=,若存在不相同的矩阵B,C使得AB=AC,且A*≠O,则a=__________。
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则().
设A=,E为3阶单位矩阵.(1)求方程组Ax=0的一个基础解系.(2)求满足AB=E的所有矩阵B.
设3阶实对称矩阵A的特征值λ=11,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量.(2)求矩阵B.
求一个单位向量与α1=(2,4,一2,1),α2=(0,0,0,1),α3=(2,3,4,3)都正交.
随机试题
按拉恩基尔的生活型分类,下列植物中属于一年生的是()
患者,女性,18岁。突然剧烈头痛伴呕吐,查体:颈项强直,克氏征阳性,布氏征阳性,体温37.0℃,既往体健。CT示双侧裂池及纵裂池内等密度影。若需由静脉补充水分,每日补液量不宜超过
皮肤常突然发生片状水肿隆起的皮损,自觉剧痒,可时起时退,属哪种皮损()
患者,女,于昨日行剖宫术,术中出血较多,遵医嘱静脉输入1000ml库存血,输血后患者突然手足抽搐,血压下降,心率减慢,伤口渗血增加。患者可能发生
()有权对会计师事务所出具的审计报告的程序和内容进行监督。
由于建设用地性质的不同,会对经济环境条件提出不同的要求,但最基本的经济环境条件应包括()。
人类科技发展的历程中,先后出现了下列重大科技事件:①电子计算机;②能量守恒定律;③有线电话;④航天器。按时间先后顺序排列正确的是()。
2013年,重庆市房地产开发企业完成投资突破3000亿大关,达3012.78亿元,同比增长20.1%,较一季度回落5.2个百分点,比上半年回落7.6个百分点,比前三季度回落0.5个百分点。截至12月月底,全市商品房施工面积26251.89万平方米,同比增
我国经济建设的战略部署大体分三步走,第一步是
Readthetextsfromamagazinearticleinwhichfivespeakerstalkedabouttheirjobs.Forquestions61to65,matchthespeaker
最新回复
(
0
)