设A为n×m矩阵,A以列分块,记A=(α1,α2,…,αi,…,αm),在A中划去第i列得到的矩阵记为B,B=(α1,…,αi-1,αi+1,…,αm),则r(A)=r(B)是αi可以由B的列向量线性表示的( )。

admin2018-11-16  6

问题 设A为n×m矩阵,A以列分块,记A=(α1,α2,…,αi,…,αm),在A中划去第i列得到的矩阵记为B,B=(α1,…,αi-1,αi+1,…,αm),则r(A)=r(B)是αi可以由B的列向量线性表示的(    )。

选项 A、充分条件
B、必要条件
C、充要条件
D、既不充分又不必要条件

答案C

解析 若r(A)=r(B),则B的列向量组的最大线性无关组也是A的列向量组的最大线性无关组,而αi不再其中,故αi可以由B的列向量组的最大线性无关组线性表示。
反之,若αi可以由B的列向量组线性表示,且A的其余列向量也可以由B的列向量组线性表示,故A与B等价,则r(A)=r(B)。故选C。
转载请注明原文地址:https://kaotiyun.com/show/Gfca777K
0

随机试题
最新回复(0)