首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=1/(1-x-x2),记an=f(n)(0)/n!(n=0,1,2,…)。 (1)证明a0=a1=1,an+2=an+1+an,n=0,1,2,…; (2)求级数的和。
设f(x)=1/(1-x-x2),记an=f(n)(0)/n!(n=0,1,2,…)。 (1)证明a0=a1=1,an+2=an+1+an,n=0,1,2,…; (2)求级数的和。
admin
2021-04-16
96
问题
设f(x)=1/(1-x-x
2
),记a
n
=f
(n)
(0)/n!(n=0,1,2,…)。
(1)证明a
0
=a
1
=1,a
n+2
=a
n+1
+a
n
,n=0,1,2,…;
(2)求级数
的和。
选项
答案
(1)法一:a
0
=f(0)=1,a
1
=f’(0)=[(1+2x)/(1-x-x
2
)
2
]|
x=0
=1,当n≥2时,对(1-x-x
2
)f(x)=1两边求n阶导数,并由莱布尼茨高阶求导公式,有 C
n
0
f
(n)
(x)+C
n
1
(-1-2x)f
(n-1)
(x)-2C
n
2
f
(n-2)
(x)=0, 将x=0代入上式,整理得 f
(n)
(0)-nf
(n-1)
(0)-n(n-1)f
(n-2)
(0)=0,除以n!,于是 (1/n!)f
(n)
(0)-[1/(n-1)!]f
(n-1)
(0)-[1/(n-2)!]f
(n-2)
(0)=0,即a
n
=a
n-1
+a
n-2
,n=2,3,4,… [*] 由待定系数法,有a
0
=a
1
=1,a
n
=a
n-1
+a
n-1
,n=2,3,4,… (2)a
3
=a
1
+a
0
=2≥2,a
3
=a
2
+a
1
=3≥3,易知a
n
≥n,n=0,1,2,…,故 [*] =1/a
0
+1/a
1
+1/a
n+1
+1/a
n+2
=2-1/a
n+1
-1/a
n+2
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Gpx4777K
0
考研数学三
相关试题推荐
设α,β是三维单位正交列向量,令A=αβT+βαT.证明:(1)|A|=0;(2)α+β,α一β是A的特征向量;(3)A相似于对角阵,并写出该对角阵.
已知级数与广义积分e(p-2)xdx均收敛,则p的取值范围是_________.
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1).使得(ξ)≥8.
设α,β,γ均为大于1的常数,则级数()
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且f(1)=1,f(2)=6.证明:存在ξ∈(0,2),使得f"'(ξ)=9.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
级数的收敛域为________.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
随机试题
该患儿最可能的诊断是该患儿在治疗过程中突然出现呼吸困难加重,经吸痰和给予氧气吸入后无明显缓解,应考虑可能是
一巴哥犬、1.5岁、雌性,其阴唇肿胀、充血,阴部流少量淡粉红色液体。卧地时可见阴门处露出一粉红色异物,质地柔软,表面有大量角化细胞和复层鳞状细胞。如手术治疗时,应注意避免损伤
WHO推荐的传统配方口服补液盐的张力是
光电测距仪的照准误差(相位不均匀误差)、偏调误差(三轴平行性)及加常数、乘常数,一般()进行一次检验。
对施工成本计划进行划分,应计入企业管理费用的有()。
根据劳动合同法律制度的规定,下列关于无效劳动合同法律后果的表述中,不正确的是()。
案例:信息技术“幻灯片的超链接”这一堂课的教学目标是为幻灯片的文字按钮建立超链接,学生之前已经学习过了在Word当中对文字建立超链接。张老师教学过程设计如下:①教师将幻灯片顺序混乱的ppt文件发放给学生,请学生在不改变现有顺序的情况下,根据
求二元函数f(x,y)=x2(2+y2)+ylny的极值.
程序设计语言的基本成分是数据成分、运算成分、控制成分和()。
WhatdoyouknowaboutMr.Luoafterreading?58,WhatdidMr.Luoapplyfor?
最新回复
(
0
)