首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
admin
2019-07-10
106
问题
设α,β是三维单位正交列向量,令A=αβ
T
+βα
T
.证明:
(1) |A|=0;
(2)α+β,α一β是A的特征向量;
(3)A相似于对角阵,并写出该对角阵.
选项
答案
(1)A为三阶矩阵, r(A)=r(αβ
T
+βα
T
)≤r(αβ
T
)+r(βα
T
)≤r(α)+r(β)≤2<3, 故|A|=0. (2)因α,β为三维单位正交向量,故 α
T
α=1,β
T
β=1,βα
T
=βα
T
=0. 当然α,β线性无关,又α,β为单位向量,α+β≠0,故 A(α+β)=(αβ
T
+βα
T
)(α+β)=αβ
T
α+αβ
T
β+βα
T
α+βα
T
β =α.0+α.1+β.1+β.0=α+β, 即a+β为A的对应于特征值λ
1
=1的特征向量.同法可求 A(α一β)=(αβ
T
+βα
T
)(α一β)=αβ
T
a一αβ
T
β+βα
T
α一βα
T
β =α.0一α.1+β.1一β.0=一(α一β), 故α一β为A的对应于特征值λ
2
=一1的特征向量。 设另一特征值为λ
3
,由|A|=0得到|A|=λ
1
λ
2
λ
3
=0,故λ
3
=0. (3)因A有3个不同特征值,故A~A=diag(0,1,一1),即其相似对角矩阵为 A=diag(0,1,一1) (diag为对角矩阵的英文简写).
解析
(1)利用r(B+C)≤r(B)+r(C),r(BC)≤min{r(B),r(C)},证明r(A)<3;
(2)利用特征向量的定义,即利用A(α+β)=k(α+β),A(α一β)=C(a一β)证之;
(3)证明A有3个不同的特征值即可。
转载请注明原文地址:https://kaotiyun.com/show/7TJ4777K
0
考研数学三
相关试题推荐
设事件A,B相互独立,P(A)=0.3,且则P(B)=______________.
设f(x)具有二阶连续可导,且则().
设A,B为n阶矩阵,求P·Q;
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|—A1一2A2,2A2+3A3,一3A3+2A1|=_____________.
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.求(X,Y)的概率分布.
曲线ex+y一sin(xy)=e在点(0,1)处的切线方程为___________.
求常数a,b使得
求幂级数的收敛域D与和函数S(x).
设二维非零向量α不是二阶方阵A的特征向量.若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
随机试题
施工现场临时木料间、油漆间、木工机具间等,每25m2配备灭火器至少为()只。
对省、自治区、直辖市人民政府的具体行政行为不服的,向国务院申请行政复议。()
经济法学的发祥地是【】
中药的副作用是
编制项目管理工作任务分工表的目的是为了明确()。
计划的特点是()
该市2005年6月的总保费收入比去年同期约增长了:根据四年来该市保费收入的变化,可以推出:[1]该市的人均收入有较大增长[2]人们的保险和理财意识不断增强[3]人们对于人身险的投入明显高于对于其他险种的投入
已知袋中装有红、黑、白三种颜色的球若干个,则红球最多.(1)随机取出的一球是白球的概率为.(2)随机取出的两球中至少有一个的黑球概率小于.
[*]
A、NextSaturday.B、ThisSaturday.C、Nextmonth.D、NextMonday.B对话中,女士问男士下周一交报告可以吗,男士表示恐怕不行,并说周六是最后的截止日期。由此可见,女士必须在周六交上报告。
最新回复
(
0
)