首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
admin
2019-07-10
108
问题
设α,β是三维单位正交列向量,令A=αβ
T
+βα
T
.证明:
(1) |A|=0;
(2)α+β,α一β是A的特征向量;
(3)A相似于对角阵,并写出该对角阵.
选项
答案
(1)A为三阶矩阵, r(A)=r(αβ
T
+βα
T
)≤r(αβ
T
)+r(βα
T
)≤r(α)+r(β)≤2<3, 故|A|=0. (2)因α,β为三维单位正交向量,故 α
T
α=1,β
T
β=1,βα
T
=βα
T
=0. 当然α,β线性无关,又α,β为单位向量,α+β≠0,故 A(α+β)=(αβ
T
+βα
T
)(α+β)=αβ
T
α+αβ
T
β+βα
T
α+βα
T
β =α.0+α.1+β.1+β.0=α+β, 即a+β为A的对应于特征值λ
1
=1的特征向量.同法可求 A(α一β)=(αβ
T
+βα
T
)(α一β)=αβ
T
a一αβ
T
β+βα
T
α一βα
T
β =α.0一α.1+β.1一β.0=一(α一β), 故α一β为A的对应于特征值λ
2
=一1的特征向量。 设另一特征值为λ
3
,由|A|=0得到|A|=λ
1
λ
2
λ
3
=0,故λ
3
=0. (3)因A有3个不同特征值,故A~A=diag(0,1,一1),即其相似对角矩阵为 A=diag(0,1,一1) (diag为对角矩阵的英文简写).
解析
(1)利用r(B+C)≤r(B)+r(C),r(BC)≤min{r(B),r(C)},证明r(A)<3;
(2)利用特征向量的定义,即利用A(α+β)=k(α+β),A(α一β)=C(a一β)证之;
(3)证明A有3个不同的特征值即可。
转载请注明原文地址:https://kaotiyun.com/show/7TJ4777K
0
考研数学三
相关试题推荐
设求B-1.
令A=(α1,α2,α3),因为|A|=2,所以A*A=|A|E=2E,而A*A=(A*α1,A*α2,A*α3),所以[*]于是[*]
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.求A的特征值;
设求曲线y=f(x)与x轴所围成的平面区域的面积.
设f(x)为偶函数,且f′(一1)=2,则
由方程确定的隐函数z=z(x,y)在点(1,0,一1)处的微分为dz=__________.
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
已知齐次线性方程组其中ai≠0,试讨论a1,a2,…,an和b满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解。在有非零解时,求此方程组的一个基础解系。
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
设n是正整数,则
随机试题
下列哪项不符合低钾血症的临床表现
该患者的诊断是下一步治疗方案首选
关于结核菌,下列哪项是错误的
母乳喂养,增加辅食和断奶最适宜的时间
理财计划的服务理念是根据客户个性化的需求为客户量身定做产品和服务,通过客户资产的全球配置,降低风险,从而达到财富保值和增值的目的。()
大多数情况下,证券资产组合能够分散风险,但不能完全消除风险。()
公安机关普遍实行警务公开制度,你认为有何意义?
一个心理健康的人,必须保持自尊;一个人只有受到自己所尊敬的人的尊敬,才能保持自尊;而一个用“追星”方式来表达自己尊敬情感的人,不可能受到自己所尊敬的人的尊敬。以下哪项结论可以从题干的断定中推出?
凭发票抵扣进项税额的消费型增值税的税负总是会最终全落到消费者身上。()
[2000年MBA真题]在经历了全球范围的股市暴跌的冲击以后,T国政府宣称,它所经历的这场股市暴跌的冲击,是由于最近国内一些企业过快的非国有化造成的。以下哪项,如果事实上是可操作的,最有利于评价T政府的上述宣称?
最新回复
(
0
)