首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
admin
2019-07-10
142
问题
设α,β是三维单位正交列向量,令A=αβ
T
+βα
T
.证明:
(1) |A|=0;
(2)α+β,α一β是A的特征向量;
(3)A相似于对角阵,并写出该对角阵.
选项
答案
(1)A为三阶矩阵, r(A)=r(αβ
T
+βα
T
)≤r(αβ
T
)+r(βα
T
)≤r(α)+r(β)≤2<3, 故|A|=0. (2)因α,β为三维单位正交向量,故 α
T
α=1,β
T
β=1,βα
T
=βα
T
=0. 当然α,β线性无关,又α,β为单位向量,α+β≠0,故 A(α+β)=(αβ
T
+βα
T
)(α+β)=αβ
T
α+αβ
T
β+βα
T
α+βα
T
β =α.0+α.1+β.1+β.0=α+β, 即a+β为A的对应于特征值λ
1
=1的特征向量.同法可求 A(α一β)=(αβ
T
+βα
T
)(α一β)=αβ
T
a一αβ
T
β+βα
T
α一βα
T
β =α.0一α.1+β.1一β.0=一(α一β), 故α一β为A的对应于特征值λ
2
=一1的特征向量。 设另一特征值为λ
3
,由|A|=0得到|A|=λ
1
λ
2
λ
3
=0,故λ
3
=0. (3)因A有3个不同特征值,故A~A=diag(0,1,一1),即其相似对角矩阵为 A=diag(0,1,一1) (diag为对角矩阵的英文简写).
解析
(1)利用r(B+C)≤r(B)+r(C),r(BC)≤min{r(B),r(C)},证明r(A)<3;
(2)利用特征向量的定义,即利用A(α+β)=k(α+β),A(α一β)=C(a一β)证之;
(3)证明A有3个不同的特征值即可。
转载请注明原文地址:https://kaotiyun.com/show/7TJ4777K
0
考研数学三
相关试题推荐
有16件产品,12个一等品,4个二等品.从中任取3个,至少有1个是一等品的概率为____________.
设事件A,B相互独立,P(A)=0.3,且则P(B)=______________.
设f(x)在x=0的邻域内有定义,f(0)=1,且则f(x)在x=0处().
设y=f(x)为区间[0,1]上的非负连续函数.证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设求:(1)|一2B|;(2)AB—BA.
设A为n阶可逆矩阵(n≥2),则[(A*)*]-1=_______(用A*表示).
设φ1(x),φ2(x)为一阶非齐次线性微分方程y′+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
已知有三个线性无关的特征向量,则a=_________.
判断级数的敛散性.
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
随机试题
膳食纤维与结肠癌死亡率呈负相关。()
下述哪一项不是导致骨折延迟愈合的因素
债券的期限在1年以上、10年以下的为()债券。
水库等工程蓄引水前,必须进行蓄引水(阶段)验收。验收前,应按照水利部有关规定对工程进行()。通过后,才可以进行验收。
下面为某教师在教学中使用的图示:问题:根据图示,概述英国君主立宪制度的特点。
培养()是形成道德品质的关键所在。
《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》首次设立安全发展专篇,对强化国家经济安全保障,实施粮食安全、能源资源安全和金融安全等战略做出了具体安排。下列有关实施金融安全战略的说法,错误的是()。
某字长为8位的计算机中,带符号整数采用补码表示,x=—68,y=—80,x和y分别存放在寄存器A和B中,请回答下列问题(最终要求用十六进制表示二进制序列)。若x和y相加后的结果存放在寄存器C中,则寄存器C中的内容是什么?运算结果是否正确?此时,溢出标志
【2011浙江财经大学单选题第3题】商业银行与其他金融机构的区别之一在于其能接受()。
新民主主义社会是
最新回复
(
0
)