首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
admin
2019-07-10
118
问题
设α,β是三维单位正交列向量,令A=αβ
T
+βα
T
.证明:
(1) |A|=0;
(2)α+β,α一β是A的特征向量;
(3)A相似于对角阵,并写出该对角阵.
选项
答案
(1)A为三阶矩阵, r(A)=r(αβ
T
+βα
T
)≤r(αβ
T
)+r(βα
T
)≤r(α)+r(β)≤2<3, 故|A|=0. (2)因α,β为三维单位正交向量,故 α
T
α=1,β
T
β=1,βα
T
=βα
T
=0. 当然α,β线性无关,又α,β为单位向量,α+β≠0,故 A(α+β)=(αβ
T
+βα
T
)(α+β)=αβ
T
α+αβ
T
β+βα
T
α+βα
T
β =α.0+α.1+β.1+β.0=α+β, 即a+β为A的对应于特征值λ
1
=1的特征向量.同法可求 A(α一β)=(αβ
T
+βα
T
)(α一β)=αβ
T
a一αβ
T
β+βα
T
α一βα
T
β =α.0一α.1+β.1一β.0=一(α一β), 故α一β为A的对应于特征值λ
2
=一1的特征向量。 设另一特征值为λ
3
,由|A|=0得到|A|=λ
1
λ
2
λ
3
=0,故λ
3
=0. (3)因A有3个不同特征值,故A~A=diag(0,1,一1),即其相似对角矩阵为 A=diag(0,1,一1) (diag为对角矩阵的英文简写).
解析
(1)利用r(B+C)≤r(B)+r(C),r(BC)≤min{r(B),r(C)},证明r(A)<3;
(2)利用特征向量的定义,即利用A(α+β)=k(α+β),A(α一β)=C(a一β)证之;
(3)证明A有3个不同的特征值即可。
转载请注明原文地址:https://kaotiyun.com/show/7TJ4777K
0
考研数学三
相关试题推荐
设f(x)三阶可导,证明:存在ξ∈(0,1),使得f"′(ξ)=0.
设有三个线性无关的特征向量.求a;
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
设y=f(x)为区间[0,1]上的非负连续函数.证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设D是xOy平面上以(1,1),(一1,1),(一1,一1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则等于().
在长为L的线段上任取两点,求两点之间距离的数学期望及方差.
讨论函数的连续性.
设在x=1处可微,则a=______,b=______.
设则∫01f(x)dx=______.
随机试题
(2008年第67题)下列符合中度有机磷中毒时的胆碱酯酶活力是
在硫酸中,硫的化合价或氧化数是
博来霉素最严重的不良反应是( )。
吗啡的适应症是()。
全面建设小康社会进程中的关键问题是()。
消防设施施工安装以经法定机构批准或者备案的()为依据。
在嘻杂的环境中人们能够敏感地听见有人喊自己的名字,这是知觉的()
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且=0,又f’(x)=一2x2+∫0xg(x一t)dt,则().
A、很喜欢这家餐馆B、她不挑食C、喜欢和男的在一起D、喜欢吃私房菜C根据“只要和你在一起,我就很开心”这句话,可知选C。
Weshalltakethetreasureawaytoasafeplace.
最新回复
(
0
)