首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. (1)求常数a; (2)求方程组AX=0的通解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. (1)求常数a; (2)求方程组AX=0的通解.
admin
2017-09-15
54
问题
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
皆为AX=0的解.
(1)求常数a;
(2)求方程组AX=0的通解.
选项
答案
(1)因为r(A)=1,所以方程组AX=0的基础解系含有三个线性无关的解向量, 故(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
线性相关,即 [*] 解得a=6. (2)因为(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
线性无关,所以方程组AX=0的通解为X=k
1
(1,-2,1,2)
T
+k
2
(1,0,5,2)
T
+k
3
(-1,2,0,1)
T
(k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/Gsk4777K
0
考研数学二
相关试题推荐
[*]
[*]
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2总成本函数为C=35+40(Q1+Q2)试问:厂家如何确定两个市场的产品售价,使其获得的总利润最
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
A、x=0必是g(x)的第一类间断点B、x=0必是g(x)的第二类间断点C、x=0必是g(x)的连续点D、g(x)在点x=0处的连续性与口的取值有关D
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ+(a)>0,证明:存在ξ∈(a,b),使得f〞(a)<0.
化二重积分为二次积分(写出两种积分次序).(1)D={(x,y)||x|≤1,|y|≤1}.(2)D是由y轴,y=1及y=x围成的区域.(3)D是由x轴,y=lnx及x=e围成的区域.(4)D是由x轴,圆x2+y2-2x=0在第一象限的部分及直线x
设函数,问a为何值时,f(x)在x=0处连续;n为何值时,x=0是f(x)的可去间断点?
曲线的斜渐近线方程为______.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
随机试题
企业自行研制开发一项技术,经申请获得专利权。有关资料如下:(1)2013年5月,以银行存款支付研发支出20000元,其中符合资本化条件的是16500元;(2)2013年12月1日,无形资产研发成功并申请专利,以银行存款支付律师费1000元,注册费500
拔毒化腐生肌药一章中,只能外用,不可内服的药物是________、________。
A.始发期B.早期病变C.病损确立期D.进展期E.静止期
决定牙齿形态的重要的结构是
强心甙治疗心房纤颤的机制主要是
既有法人项目的特点包括()。
经济法律关系的三个要素中,只有主体变更才会引起经济法律关系的变更。()
类的析构函数是在什么时候调用的?
Iwishyou______tomebeforeyouwentandboughtthatcar.
Whatdeterminesthekindofpersonyouare?Whatfactorsmakeyoumoreorlessbold,intelligent,orabletoreadamap?Allof
最新回复
(
0
)