已知数列{an}为等比数列,数列{bn}为等差数列,且满足求等差数列{bn}的公差d.

admin2018-01-28  4

问题 已知数列{an}为等比数列,数列{bn}为等差数列,且满足求等差数列{bn}的公差d.

选项

答案已知数列{bn}为等差数列,设bn=An+B. 数歹4{an}为等比数列,则[*] 又因为[*] 则[*] 代入后可得[*] 即(5A+B-5)(A+B-1)=(3A+B-3)2, 化简可得A2-2A+1=0. 解得A=1, 所以d=bn-bn-1=n+B-(n-1+B)=1, 即等差数列的公差d=1.

解析
转载请注明原文地址:https://kaotiyun.com/show/GzBq777K
0

相关试题推荐
随机试题
最新回复(0)