首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 ①求A.②证明A+E是正定矩阵.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 ①求A.②证明A+E是正定矩阵.
admin
2017-10-21
49
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为y
1
2
+y
2
2
,Q的第3列为
①求A.②证明A+E是正定矩阵.
选项
答案
①条件说明 [*] 于是A的特征值为1,1,0,并且Q的第3列[*] 是A的特征值为0的特征向量.记α
1
=(1,0,1)
T
,它也是A的特征值为0的特征向量. A是实对称矩阵,它的属于特征值1的特征向量都和α
1
正交,即是方程式x
1
+x
3
=0的非零解. α
2
=(1,0,一1)
T
,α
3
=(0,1,0)
T
是此方程式的基础解系,它们是A的特征值为1的两个特征向量. 建立矩阵方程 A(α
1
,α
2
,α
3
)=(0,α
2
,α
3
), 两边做转置,得 [*] 解此矩阵方程 [*] ②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/HOH4777K
0
考研数学三
相关试题推荐
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设且A~B.(1)求a;(2)求可逆矩阵P,使得P—1AP=B.
设A=有三个线性无关的特征向量,求x,y满足的条件.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
A2一B2=(A+B)(A—B)的充分必要条件是__________.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
随机试题
患者何某,女性,54岁。由于暴怒,突然晕倒,不省人事,牙关紧闭,面赤唇紫,舌红,脉沉弦。其辨证为
红细胞生成素维生素B12
如果在下降趋势的末期出现上升三角形,以后可能会( )。
督促程序适用于()的案件。
“上善若水”一语出自()。
花儿:因开放而飘香
你对琐碎的工作是喜欢还是讨厌?为什么?
以下哪一个教育政策不是抗日战争时期中国共产党提出来的?()
有一个NAT设备具有一个外部IP地址,如果内部的5台主机都希望利用该外部IP地址同时访问Internet,那么该设备应该采用的工作模式为()。
WeddingCrashersisacomedythathadoncetakenthetopatNorthAmericanboxofficein2005.Consideringthewaterloosmany(3
最新回复
(
0
)