首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 ①求A.②证明A+E是正定矩阵.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 ①求A.②证明A+E是正定矩阵.
admin
2017-10-21
47
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为y
1
2
+y
2
2
,Q的第3列为
①求A.②证明A+E是正定矩阵.
选项
答案
①条件说明 [*] 于是A的特征值为1,1,0,并且Q的第3列[*] 是A的特征值为0的特征向量.记α
1
=(1,0,1)
T
,它也是A的特征值为0的特征向量. A是实对称矩阵,它的属于特征值1的特征向量都和α
1
正交,即是方程式x
1
+x
3
=0的非零解. α
2
=(1,0,一1)
T
,α
3
=(0,1,0)
T
是此方程式的基础解系,它们是A的特征值为1的两个特征向量. 建立矩阵方程 A(α
1
,α
2
,α
3
)=(0,α
2
,α
3
), 两边做转置,得 [*] 解此矩阵方程 [*] ②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/HOH4777K
0
考研数学三
相关试题推荐
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:.
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设n阶矩阵A与对角矩阵合同,则A是().
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P—1AP为对角阵.
设A~B,(1)求a,b;(2)求可逆矩阵P,使得P—1AP=B
设n阶矩阵A与对角矩阵相似,则().
就a,b的不同取值,讨论方程组解的情况.
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
随机试题
采用简化分批法时必须具备的条件包括【】
影响公众的态度包括影响公众的认知倾向、________和意图倾向。
A.细菌团栓塞B.血栓栓塞C.空气栓塞D.脂肪栓塞E.肿瘤栓塞急性细菌性心内膜炎
下列四种发疹性疾病中,白细胞增高者为
某些突发事件的发生对债券价值产生影响,这种风险为()。
员工素质测评标准体系中,常模参照性标准通常是()
设两个随机变量X与Y独立同分布,p{X=﹣1}=P{Y=﹣1}=1/2,p{X=1}=p{Y=1}=12,则下列各式中成立的是().
删除表Em_temp的SQL语句是
Sheexhibitedgreatpowersofenduranceduringtheclimb.
A______ofsmallglitteringfishswamby.
最新回复
(
0
)