0,令un=f(n)(n=1,2,…),则下列结论正确的是" />
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
0,令un=f(n)(n=1,2,…),则下列结论正确的是">设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
admin
2014-07-17
49
问题
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是
选项
A、若u
1
>u
2
,则{u
n
}必收敛.
B、若u
1
>u
2
,则{u
n
}必发散.
C、若u
1
<u
2
,则{u
n
}必收敛.
D、若u
1
<u
2
,则{u
n
}必发散.
答案
D
解析
转载请注明原文地址:https://kaotiyun.com/show/I1U4777K
0
考研数学三
相关试题推荐
“资本主义社会必然要转变为社会主义社会这个结论,马克思完全是从现代社会的经济的运动规律得出的。”这一规律表现在()。
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
判断下列级数的绝对收敛性和条件收敛性
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
设A与B均为n,阶矩阵,且A与B合同,则().
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
随机试题
《爱尔克的灯光》一文中,“心灵的灯”象征生活的悲剧和希望的破灭。()
以下直流电动机选择起动方式时应考虑的条件有()。
组织规划实施是国民经济规划管理了作的()。
银行业从业人员应当做到授信尽职,但对申请贷款企业的审核不包括()。
与十六进制数CD等值的十进制数是()。
下列各项中,不属于政府补助的是()。
以赫尔巴特为代表的传统教育学派的主要观点可以归纳为“三个中心”,即()
Whatarethespeakersmainlydiscussing?
Four-year-ridchildrenarebeingtestedfortheirabilitytorecognizesimplewordsandlettersinthe【B1】______.Theyarealso
Themorningnewssaysaschoolbus______(和一辆列车在路口交界处相撞)andagroupofpolicemenweresentthereimmediately.
最新回复
(
0
)