首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论p,t为何值时,方程组 无解?有解?有解时写出全部解.
讨论p,t为何值时,方程组 无解?有解?有解时写出全部解.
admin
2017-10-21
30
问题
讨论p,t为何值时,方程组
无解?有解?有解时写出全部解.
选项
答案
①用初等行变换把增广矩阵化为阶梯形矩阵 [*] 于是,当t≠一2时,有r(A|β)>r(A),此时方程组无解. 当t=一2时(p任意),r(A|β)=r(A)≤3<4,此时有无穷多解. ②当t=一2,p=一8时, [*] 得同解方程组 [*] 令x
3
=x
4
=0,得一特解(一1,1,0,0)
T
. 导出组有同解方程组 [*] 对x
3
,x
4
赋值得基础解系(4,一2,1,0)
T
,(一1,一2,0,1)
T
.此时全部解为(一1,1,0,0)
T
+c
1
(4,一2,1,0)T+c
2
(一1,一2,0,1)
T
,其中c
1
,c
2
可取任何数. ③当t=一2,p≠一8时, [*] 得同解方程组 [*] 令x
4
=0,得一特解(一1,1,0,,0)
T
. 导出组有同解方程组 [*] 令x
4
=1,得基础解系(一1,一2,0,1)
T
.此时全部解为(一1,1,0,0)
T
+c(一1,一2,0,1)
T
,其中c可取任何数.
解析
转载请注明原文地址:https://kaotiyun.com/show/I7H4777K
0
考研数学三
相关试题推荐
判别级数的敛散性,若收敛求其和.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设,求方程组AX=b的通解.
设的三个解,求其通解.
设方程组无解,则a=__________.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x—y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
求幂级数(|x|<1)的和函数s(x)及其极值.
求幂级数的和函数.
随机试题
改变病情抗风湿药治疗类风湿关节炎的作用包括
有关乳牙临床应注意的方面有
实验室内仪器应符合标准要求,保证准确可靠,计量器具使用前计量器具需
下列糖尿病慢性并发症中属微血管病变的是
下列关于城市规划管理方面的基本术语,哪一项是错误的?()
价值工程应用中方案创造可采用的方法有()。
某汽车运输公司2017年11月购置客车3辆并办理了相关手续,未签订合同;2017年12月与甲企业签订货物运输合同,合同记载材料价款100万元,运输费10万元,装卸费2万元,保险费3万元(客车车船税年税额为500元/辆)。则下列说法正确的有()。
输血本质上是一种移植,必然会伴随一系列可能发生的免疫反应,移植物抗宿主病就是其中之一,其发病原因简单说来就是供血者体内的免疫活性淋巴细胞在患者体内迁移、增殖,反客为主,进而攻击患者的免疫系统。正常情况下,受血者会把供血者淋巴细胞识别为“异己”而加以排斥,这
Thiswasanunexceptionallybrutalattack.
A—sittingroomB—manager’sofficeC—presidentialsuiteD—generalreceptionE
最新回复
(
0
)